理工学部

富樫 理恵

トガシ リエ  (Rie Togashi)

基本情報

所属
上智大学 理工学部機能創造理工学科 准教授
学位
博士(工学)(東京農工大学)

研究者番号
50444112
J-GLOBAL ID
201801000291501271
researchmap会員ID
7000023348

2006-2018、 国立大学法人東京農工大学大学院工学研究院、III族窒化物半導体、III族酸化物半導体結晶に関するエピタキシャル成長および理論解析について研究
2018-現在 上智大学理工学部機能創造理工学科、III族窒化物半導体、III族酸化物半導体結晶に関する結晶成長、デバイス応用、理論解析について研究

(研究テーマ)
III族酸化物半導体結晶成長
前駆体二段階生成HVPE法によるInN成長
III族窒化物半導体成長


論文

 59
  • Takayoshi Oshima, Rie Togashi, Yuichi Oshima
    Science and Technology of Advanced Materials 25(1) 2378683 2024年7月29日  査読有り
  • Kota Hoshino, Rie Togashi, Katsumi Kishino
    physica status solidi (b) 2400064-1-2400064-8 2024年4月25日  査読有り
    Herein, triangular‐lattice nanopillar templates are fabricated on sputter‐deposited AlN/Si (111) substrates. Nanotemplate selective‐area growth via radiofrequency‐plasma‐assisted molecular beam epitaxy is employed to grow GaN nanocolumns on the nanopillars. Well‐ordered uniform GaN nanocolumn arrays are obtained by inserting a migration‐enhanced‐epitaxy grown AlN/AlGaN buffer layer, thereby aligning the polarity of GaN to Ga‐polar. Subsequently, bulk InGaN active layers are grown on top of the GaN nanocolumns with increasing growth time (tg = 10–20 min). In the initial stage of growth (tg = 10 min), low‐In‐content InGaN grows on the edges of the six‐sided pyramidal top of the GaN nanocolumns. As the growth progresses, low‐In‐composition InGaN fills the sides between InGaN on the edges, while high‐In‐composition InGaN rapidly grows on the top of the c‐plane nanocolumns. High‐angle annular dark‐field scanning transmission electron microscopy reveals the formation of an InGaN core, covered with a low‐In‐composition InGaN shell, on the top of the nanocolumns. At tg = 20 min, the photoluminescence spectrum exhibits a peak at 669 nm with a full width at half maximum value of 51.7 nm. Thus, the proposed method is suitable for growing red‐light‐emitting well‐ordered InGaN/GaN nanocolumn arrays on Si.
  • Hiroyuki Shimada, Hironobu Kariyazono, Yohei Nakagawa, Shinji Terao, Kentaro Takayanagi, Koichiro Akasaka, Shunsuke Ishizawa, Koichi Morozumi, Tsutomu Asakawa, Rie Togashi, Katsumi Kishino
    Japanese Journal of Applied Physics 63(2) 02SP67-02SP67 2024年1月23日  査読有り
    Abstract In this paper, we report achieving extremely high-density packing in high-voltage vertical gallium nitride (GaN) nanocolumn Schottky barrier diodes (NC-SBDs) through the adoption of a bottom-up process. The NC-SBDs were formed via epitaxial growth using Titanium-mask selective area growth (Ti-SAG) by rf-plasma-assisted MBE (rf-MBE), realizing a packing density equivalent to exceeding 10 million columns/mm2. Our fabricated NC-SBDs with a period of 300 nm, a diameter of 250 nm, and a drift length of 1.3 μm demonstrated a breakdown voltage (BV) of 260 V with an on-resistance of 2.0 mΩcm2, yielding an excellent figure of merit of 33.8 MW/cm2 for nanocolumn-based high-voltage devices. We also discuss dielectric reduced surface field effect and impurities within the nanocolumns as potential factors contributing to the achievement of higher BV devices.
  • 岸野 克巳, 富樫 理恵, 大音 隆男
    日本結晶成長学会誌 51(2) 2024年  査読有り
  • Katsumi Kishino, Ai Mizuno, Tatsuya Honda, Jumpei Yamada, Rie Togashi
    Applied Physics Express 17(1) 014004-014004 2023年12月28日  査読有り
    Abstract A red InGaN-based nanocolumn micro μLED with an emission diameter of ϕ2.2 μm was demonstrated to achieve an on-wafer external quantum efficiency (EQE) of 2.1% at the peak wavelength of 615 nm. The LED was fabricated by repeating the electrode process on the same nanocolumn pattern area and reducing the emission diameter from ϕ80 to ϕ2.2 μm. The peak EQE, which was maximized at ∼25 A cm−2, increased by decreasing the emission diameter from 1.2% to 2.1%. This behavior, which differs from that of InGaN-film LEDs, is characterized as a unit of independent nano-LEDs with passivated sidewalls of nanocolumn LEDs.

MISC

 77

講演・口頭発表等

 377

共同研究・競争的資金等の研究課題

 15