研究者業績
基本情報
- 所属
- 上智大学 理工学部機能創造理工学科 准教授
- 学位
- 博士(工学)(2005年3月 大阪大学)
- J-GLOBAL ID
- 201301010084643722
- researchmap会員ID
- 7000004360
研究テーマ
- 火災旋風の振動現象に関する研究
- ガソリンエンジン後処理フィルターの開発
- 空気流による非接触把持機器の開発
受賞
4-
2007年4月
-
2003年2月
-
2001年3月
-
1999年3月
論文
33-
Journal of Combustion 2025(1) 3035709 2025年1月 査読有り筆頭著者責任著者This study focused on the unsteady behavior of fire whirls. A laboratory‐scale fire whirl was generated, and temporal variations in flame height were measured from images taken by a high‐speed camera and subjected to frequency analysis. The flame height fluctuations of the fire whirl also showed intermittent behavior, such as the puffing of a pool flame. However, the period and amplitude were irregular compared to the pool flame. In addition, the fire whirl exhibited a greater amplitude spectrum at higher frequencies than the pool flame. To investigate the velocity distribution in the horizontal plane, particle image velocimetry (PIV) was employed. The results demonstrated that the mean velocity increased from the outer radial direction toward the inner radial direction, peaked, and decreased. Conversely, the coefficient of velocity variation decreased from the outer to the inner radial direction, exhibited a minimum, and then increased. Finally, the flame was photographed from horizontal and vertical directions under two conditions with different flow velocities from the fan to generate the fire whirl. Image analysis was employed to investigate the relationship between the center position of the flame and the flame height. The results demonstrated that under conditions where the flow velocity from the fan was low, the fire whirl was intermittent and moved following the circular path drawn by the swirling flow, exhibiting unstable behavior. Furthermore, the flame height was lower when the center of the flame was further from the liquid fuel pool.
-
Journal of Flow Control, Measurement & Visualization 11(02) 15-29 2023年3月 査読有り筆頭著者責任著者
-
Biocybernetics and Biomedical Engineering 39(2) 526-535 2019年4月 査読有り
-
Journal of Flow Control, Measurement & Visualization 5 99-110 2017年10月 査読有り筆頭著者責任著者
-
The 9th JSME-KSME Thermal and Fluids Engineering Conference 1183 2017年10月 査読有り
-
Proceedings of 2015 Autumn Conference on Drive & Control 3-7 2015年10月
-
The 9th JFPS International Symposium on Fluid Power 2D3-1 2014年10月
-
Proceedings of the 12th International Symposium on Fluid Control, Measurement and Visualization OS1-01-1-42 2013年11月
-
Computers & Chemical Engineering 54 151-158 2013年5月 査読有り筆頭著者責任著者
-
Proceedings of the 23rd International Symposium on Transport Phenomena (ISTP-23) 177 2012年11月 筆頭著者責任著者
-
Proceedings of the 23rd International Symposium on Transport Phenomena (ISTP-23) 193 2012年11月
-
Proceedings of the 8th KSME-JSME Thermal and Fluids Engineering Conference GST-5-003 2012年3月
-
COMBUSTION AND FLAME 158(8) 1615-1623 2011年8月 査読有り筆頭著者責任著者
-
Proceedings of the 21st International Symposium on Transport Phenomena (ISTP-21) 210 2010年11月 筆頭著者責任著者
-
Proceedings of the Fifth Taiwan-Japan Workshop on Mechanical and AeroEngineering 383-389 2009年10月
-
AIP conference proceedings of International Conference on Numerical Analysis and Applied Mathematics 2009(2) 681-684 2009年9月 査読有り筆頭著者責任著者
-
Proceedings of the 7th JSME-KSME Thermal and Fluids Engineering Conference D135 2008年10月
-
AIP conference proceedings of International Conference on Numerical Analysis and Applied Mathematics 2008 791-793 2008年9月 査読有り筆頭著者責任著者
-
Proceedings of the 3rd IASME/WSEAS International Conference on ENERGY & ENVIRONMENT 51-54 2008年2月 筆頭著者責任著者
-
水環境学会誌 30(12) 723-729 2007年12月 査読有りThe numbers of ammonia-oxidizing bacteria (AOB), Nitrospira and Nitrobacter in a municipal wastewater treatment plant were examined for five months using a real-time PCR quantification technique. The numbers of AOB and Nitrospira were in the ranges of 3.8×1010-2.0×1011 and 4.7×1010-1.6×1011 cell · l-1, respectively. Additionally, the fractional percentages against the number of eubacteria were in the ranges of 2.1-7.6 and 2.6-7.0 %, respectively. Nitrobacter was less than 1 % as common as Nitrospira. On the other hand, the maximum ammonia- and nitrite-oxidizing rates obtained from aerobic batch tests ranged from 0.08 to 0.41 and from 0.10 to 0.27 mmol-N · l-1 · hr-1, respectively. No correlation between cell number and maximum rate was observed. The maximum cell-specific ammonia- and nitrite-oxidizing rates were then estimated to be in the range of 0.53-5.6 and 1.2-5.4 fmol-N·cell-1 · hr-1, respectively. In other words, even in the same wastewater treatment plant, these maximum cell-specific rates were not unique. To explore the factors controlling the maximum cell-specific ammonia-oxidizing rate, the relationship with in situ ammonia-oxidizing activity per cell was investigated. A fairly good correlation was obtained. The result indicates that the amount of ammonia oxidized per cell controls the maximum cell-specific ammonia-oxidizing rate and is the primary contributor to the variation. Meanwhile, the maximum cell-specific nitrite-oxidizing rate responded to the increase in the maximum cell-specific ammonia-oxidizing rate when the number of Nitrospira was less than that of AOB.
-
Proceedings of 10th International Congress on Liquid Atomization and Spray Systems CD-ROM 2006年8月 筆頭著者
-
JSME INTERNATIONAL JOURNAL SERIES B-FLUIDS AND THERMAL ENGINEERING 49(2) 498-505 2006年5月 査読有り筆頭著者
-
PHYSICS OF FLUIDS 17(12) 123301-1-14 2005年12月 査読有り筆頭著者
-
Proceedings of the 20th ICDERS 83 2005年8月 筆頭著者
-
日本機械学会論文集B編 71(707) 1921-1928 2005年7月 査読有り筆頭著者Experimental observations and numerical simulations were conducted on combustion processes of n-decane polydisperse spray entering gaseous flat-flame stabilized in laminar 2D counterflow configuration. The experimental burner restrained the flow from fluctuating to investigate the effects of spray characteristics. Concerning the calculations, for the gaseous phase, we used Eulerian mass, momentum, energy, and species conservation equations. For the disperse phase, all the individual droplets were tracked without using a droplet parcel model. Firstly, we observed blue and luminous flames experimentally and the intensity of these flames changed unsteadily. Secondly, we examined the spray flame structure numerically should the supplied quantity of liquid fuel changed. Both timeaveraged and instantaneous spray flame structures varied depending on the quantities of spray. Furthermore, the instantaneous structures were consistent with the typical flame structures observed by the experiment. Consequently, these results show that the difference of the supplied liquid fuel spray can cause the variation of spray flame structures.
-
Annual Research Briefs-2004, Center for Turbulence Research, NASA Ames/Stanford University 269-280 2004年8月
-
PHYSICS OF FLUIDS 15(8) 2338-2351 2003年8月 査読有り
書籍等出版物
1講演・口頭発表等
2共同研究・競争的資金等の研究課題
11-
日本学術振興会 科学研究費助成事業 2023年4月 - 2026年3月
-
自動車用内燃機関技術研究組合 学外共同研究 2025年4月 - 2026年2月
-
上智大学 理工学部申請型(応募制)研究費 2024年4月 - 2025年3月
-
自動車用内燃機関技術研究組合 学外共同研究 2024年4月 - 2025年2月
-
上智大学 理工学部応募制研究費 2015年4月 - 2016年3月