Department of Liberal Arts

長谷部 拓也

ハセベ タクヤ  (Hasebe Takuya)

基本情報

所属
上智大学 国際教養学部国際教養学科 准教授
学位
学士(ラドガーズ大学)
Doctor of Philosophy(ニューヨーク市立大学)

研究者番号
60748896
J-GLOBAL ID
201501011916812440
researchmap会員ID
7000013448

外部リンク

2013-2014 Postdoctoral Research at University of California Davis
2014-present Assistant Professor at Sophia University


研究キーワード

 3

経歴

 3

学歴

 2

論文

 18
  • Takuya Hasebe
    The Stata Journal: Promoting communications on statistics and Stata 22(4) 734-771 2022年12月  査読有り
    In this article, I describe the commands that implement the estimation of three endogenous models of binary choice outcome. The command esbinary fits the endogenously switching model, where a potential outcome differs across two treatment states. The command edbinary fits the endogenous dummy model, which includes a dummy variable indicating the treatment state as one of the explanatory variables. After one estimates the parameters of these models, various treatment effects can be estimated as postestimation statistics. The command ssbinary fits the sample-selection model, where an outcome is observed in only one of the states. The commands fit these models using copula-based maximumlikelihood estimation.
  • 庄野 嘉恒, 菅井 郁, 長谷部 拓也
    RIETI Policy Discussion Paper Series 21-P-021 2021年12月  
  • Wim Vijverberg, Takuya Hasebe
    Communications in Statistics - Simulation and Computation 52(6) 2290-2309 2021年4月12日  査読有り
  • Takuya Hasebe
    Economics Letters 200 109768-109768 2021年3月  査読有り
  • Takuya Hasebe
    The Stata Journal: Promoting communications on statistics and Stata 20(3) 627-646 2020年9月  査読有り
    In this article, I describe the escount command, which implements the estimation of an endogenous switching model with count-data outcomes, where a potential outcome differs across two alternate treatment statuses. escount allows for either a Poisson or a negative binomial regression model with lognormal latent heterogeneity. After estimating the parameters of the switching regression model, one can estimate various treatment effects with the command teescount. I also describe the command lncount, which fits the Poisson or negative binomial regression model with lognormal latent heterogeneity.

MISC

 1

書籍等出版物

 1

講演・口頭発表等

 26

共同研究・競争的資金等の研究課題

 7

社会貢献活動

 2