研究者業績

都築 正男

ツヅキ マサオ  (Tsuzuki Masao)

基本情報

所属
上智大学 理工学部情報理工学科 教授
学位
博士(数理科学)(東京大学)

研究者番号
80296946
J-GLOBAL ID
200901059192358429
researchmap会員ID
6000003376

(研究テーマ)
保型形式と付随するL関数について


研究キーワード

 1

論文

 25
  • Henry H. Kim, Masao Tsuzuki, Satoshi Wakatsuki
    Forum Mathematicum 34(2) 469-505 2022年3月1日  
    Abstract In this paper, we give an explicit formula for the Shintani double zeta functions with any ramification in the most general setting of adeles over an arbitrary number field. Three applications of the explicit formula are given. First, we obtain a functional equation satisfied by the Shintani double zeta functionsin addition to Shintani’s functional equations.Second, we establish the holomorphicity of a certain Dirichlet series generalizing a result by Ibukiyama and Saito. This Dirichlet series occurs in the study of unipotent contributions of the geometric side of the Arthur–Selberg trace formula of the symplectic group.Third, we prove an asymptotic formula of the weighted average of the central values of quadratic Dirichlet L-functions.
  • 都築 正男
    281(10) 109215-109215 2021年11月  査読有り筆頭著者
  • Shingo Sugiyama, Masao Tsuzuki
    The Ramanujan Journal 2019年  査読有り
  • Masao Tsuzuki
    Kyoto Journal of Mathematics 58(2) 427-491 2018年  査読有り
  • Shingo Sugiyama, Masao Tsuzuki
    Journal of Functional Analysis 275(11) 2978-3064 2018年  査読有り
  • Masao Tsuzuki
    TOKYO JOURNAL OF MATHEMATICS 39(3) 923-975 2017年3月  査読有り
    For a given stale quadratic algebra E over a p-adic field F, we establish a transfer of unramified test functions on the symmetric space GL(2, F)\GL(2, E) to those on a unitary hyperbolic space so that the orbital integrals match. This is an important step toward a comparison of relative trace formulas of these symmetric spaces, which would yield an example of a non-tempered analogue of a refined global Gross-Prasad conjecture.
  • Shingo Sugiyama, Masao Tsuzuki
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES 68(4) 908-960 2016年8月  査読有り
    We develop a derivative version of the relative trace formula on PGL(2) studied in our previous work, and derive an asymptotic formula of an average of central values (derivatives) of automorphic L-functions for Hilbert cusp forms. As an application, we prove the existence of Hilbert cusp forms with non-vanishing central values (derivatives) such that the absolute degrees of their Hecke fields are arbitrarily large.
  • Shingo Sugiyama, Masao Tsuzuki
    ACTA ARITHMETICA 176(1) 1-63 2016年  査読有り
  • Masao Tsuzuki
    JOURNAL OF NUMBER THEORY 132(11) 2407-2454 2012年11月  査読有り
    Given a maximal even integral lattice L of signature (m+, 2-) (m >= 3), we consider an orthonormal Hecke eigen basis B-1 of the holomorphic cusp forms of weight I on a tube domain with respect to the discriminant subgroup of the orthogonal group O(L). We construct a certain adelic holomorphic Poincare series whose spectral expansion is described by the central standard L-value of F is an element of B-1 and the square of a Fourier-Bessel coefficient of F. (C) 2012 Elsevier Inc. All rights reserved.
  • Masao Tsuzuki
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN 63(3) 1039-1084 2011年7月  査読有り
    Let (G, H) = (U(p,q),U (p - 1, q) x U(1)) and {Gamma(n)} a tower of congruence uniform lattices in G. By the period integrals of automorphic forms on Gamma\G along Gamma(n) boolean AND H\H, we introduce a certain discrete measure d mu(H)(Gamma n) on the H-spherical unitary dual of G. It is shown that the sequence of measures d mu(H)(Gamma n) with growing n converges in a weak sense to the Plancherel measure d(mu)(H) for the symmetric space H\G.
  • Masao Tsuzuki
    JOURNAL OF NUMBER THEORY 129(10) 2387-2438 2009年10月  査読有り
    We study the period integrals of Laplace eigenfunctions on an arithmetic quotient X of the d-dimensional hyperbolic space along a fixed eigenfunction on an arithmetic quotient of (d - 1)-dimensional hyperbolic space embedded in X. We introduce a certain counting function for period integrals and prove its asymptotic law. (c) 2009 Elsevier Inc. All rights reserved.
  • Masao Tsuzuki
    TOHOKU MATHEMATICAL JOURNAL 61(1) 115-164 2009年3月  査読有り
    We consider the real rank one unitary group G and its subgroup H obtained as the stabilizer of an anisotropic vector in the skew-hermitian space defining G. We compute the inner-product of an Eisenstein series on H and a non-holomorphic cuspidal Hecke eigenform on G restricted to H to obtain an integral representation of the standard L-function of the eigenform. We also discuss sonic consequences of the integral representation.
  • Takayuki Oda, Masao Tsuzuki
    PURE AND APPLIED MATHEMATICS QUARTERLY 5(3) 977-1028 2009年  査読有り招待有り
    Given a modular embedding j : Delta\H/H boolean AND K -> Gamma\G/K associated with an equivariant embedding (H, H/H boolean AND K) -> (G, G/K) of symmetric domains with actions of a semisimple Lie group G and a reductive subgroup H, both defined over Q compatibly, together with some other conditions. Starting from a certain harmonic left H-invariant "spherical" current on G/K with sigularity along HK/K, we can define a Poincare series. Apply partial derivative(partial derivative) over bar operator to the analytic continutation of this with respect to the parameter of eigenvalues of the "Laplacian". Then as a analogue of the Kronecker limit formula, we can construct a Green current for the cycle defined by j. This is a continuation of the previous paper [26], and here we treat the case of higher-codimensional cycles with compact Gamma\G/K.
  • Masao Tsuzuki
    JOURNAL OF FUNCTIONAL ANALYSIS 255(5) 1139-1190 2008年9月  査読有り
    Let G be the unitary group of a non-degenerate Hermitian space and H the stabilizer of a one-dimensional positive definite subspace of the Hermitian space. For a uniform lattice Gamma in G such that Gamma boolean AND H is a uniform lattice of H, we introduce the (averaged) H-period integrals of automorphic forms on Gamma\G; we study their behavior as Gamma shrinks to the identity along a tower of lattices in G and prove a limit formula of the H-period integrals. (C) 2008 Elsevier Inc. All rights reserved.
  • Masao Tsuzuki
    PACIFIC JOURNAL OF MATHEMATICS 227(2) 311-359 2006年10月  
    We obtain a Green current in the sense of Gillet-Soule on an arithmetic quotient of a complex hyperball for the modular cycle stemming from a complex subhyperball of codimension greater than one, generalizing the classical construction of the automorphic Green function for the modular curves.
  • TSUZUKI MASAO
    Commentarii Mathematici Universitatis Sancti Pauli 53(1) 37-75 2004年6月  査読有り
  • T Oda, M Tsuzuki
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES 39(3) 451-533 2003年11月  
  • TSUZUKI MASAO
    Journal of Mathematical Sciences, The University of Tokyo 9(1) 165-215 2002年  
    We consider a BSDE (backward stochastic differential equation) % $$\left\{\begin{array}{l} -dY(t)=f(B(\cdot),t,Y(t),Z(t))dt-Z(t)^*dB(t), \\ Y(1)=ξ. \end{array}\right.$$ % We construct backward stochastic difference equations approximating the BSDE, where time and space are discrete. We show the existence and uniqueness of the solutions of the backward stochastic difference equations. Also we show a convergence result of the solutions of the backward stochastic difference equations towards that of the BSDE.
  • TSUZUKI MASAO, Yasuro, Gon
    Asian Journal of Mathematics 6(2) 227-252 2002年  
  • TSUZUKI MASAO
    Journal of Mathematical Sciences, The University of Tokyo 8(4) 609-688 2001年  
    Let $G=\sU(n,1)$ and $H=\sU(n-1,1) × \sU(1)$ with $n\geqslant 2$. We realize $H$ as a closed subgroup of $G$, so that $(G,H)$ forms a semisimple symmetric pair of rank one. For irreducible representations $π$ and $η$ of $G$ and $H$ respectively, we consider the space ${\cal I}_{η,π}={\rm Hom}_{\g_\C,K} (π,{\rm Ind}_H^G(η))$ with $K$ a maximal compact subgroup in $G$ and $\g_\C$ the complexified Lie algebra of $G$. The functions that belong to ${\rm Im}(Φ)$ for some $Φ\in {\cal I}_{η,π}$ will be called the {\it Shintani functions}. We prove that ${\rm dim}_\C{\cal I}_{η,π}\leqslant 1$ for any $π $ and any $η$, giving an explicit formula of the Shintani functions that generate a \lq corner\rq\ $K$-type of $π$ in terms of Gaussian hypergeometric series. We also give an explicit formula of corner $K$-type matrix coefficients of $π$ in the usual sense.
  • TSUZUKI MASAO
    Journal of Mathematical Sciences, The University of Tokyo 8(4) 689-719 2001年  
  • M Tsuzuki
    DUKE MATHEMATICAL JOURNAL 88(1) 29-75 1997年5月  
  • TSUZUKI MASAO
    Journal of Mathematical Sciences, The University of Tokyo 4(3) 663-727 1997年  
    We shall present an explicit formula of ""generalized"" spherical functions on $SU(2,1)$ with respect to its reductive spherical subgroup $S\bigl(U(1,1) × U(1)\bigr)$, which can be considered to be a real analogue of the Whittaker-Shintani functions introduced by Shintani and investigated by Murase and Sugano. At the same time, we shall prove a multiplicity one theorem for the corresponding space of intertwining operators.
  • M TSUZUKI
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES 69(10) 417-421 1993年12月  

書籍等出版物

 1

共同研究・競争的資金等の研究課題

 25