研究者業績
基本情報
- 所属
- 上智大学 理工学部情報理工学科 教授
- 学位
- 博士(工学)(1999年3月 東京大学)
- 通称等の別名
- 矢入(江口)郁子
- 研究者番号
- 10358880
- ORCID ID
https://orcid.org/0000-0001-7522-0663- J-GLOBAL ID
- 200901082419968115
- researchmap会員ID
- 6000011105
- 外部リンク
1994年東京大学工学部卒業,1996年同大学院工学系研究科修士課程修了,1999年同博士課程修了,博士 (工学). 同年、郵政省通信総合研究所 (現 :国立研究開発法人情報通信研究機構)研究官,2008年 り上智大学准教授.ユビキタス歩行者ITSのための時空間情報処理や高齢者・障害者向けインタフエース,Future lnternet,人間行動データ分析への深層学習応用,脳情報処理などの研究開発に従事.元人工知能学会理事,元ヒューマ ンインタフエース学会理事 .
主要な研究分野
3経歴
7-
2016年4月 - 2018年3月
-
2008年4月 - 2009年3月
-
2007年10月 - 2008年3月
-
2006年4月 - 2007年9月
-
2003年10月 - 2006年3月
学歴
4-
1996年4月 - 1999年3月
-
1994年4月 - 1996年3月
-
1992年4月 - 1994年3月
-
1990年4月 - 1992年3月
委員歴
45-
2023年12月 - 現在
-
2023年9月 - 現在
-
2023年5月 - 現在
-
2019年4月 - 現在
-
2015年4月 - 現在
受賞
11-
2008年3月
論文
136-
Frontiers in Systems Neuroscience 18 2024年8月20日 査読有りBackground Imagination represents a pivotal capability of human intelligence. To develop human-like artificial intelligence, uncovering the computational architecture pertinent to imaginative capabilities through reverse engineering the brain's computational functions is essential. The existing Structure-Constrained Interface Decomposition (SCID) method, leverages the anatomical structure of the brain to extract computational architecture. However, its efficacy is limited to narrow brain regions, making it unsuitable for realizing the function of imagination, which involves diverse brain areas such as the neocortex, basal ganglia, thalamus, and hippocampus. Objective In this study, we proposed the Function-Oriented SCID method, an advancement over the existing SCID method, comprising four steps designed for reverse engineering broader brain areas. This method was applied to the brain's imaginative capabilities to design a hypothetical computational architecture. The implementation began with defining the human imaginative ability that we aspire to simulate. Subsequently, six critical requirements necessary for actualizing the defined imagination were identified. Constraints were established considering the unique representational capacity and the singularity of the neocortex's modes, a distributed memory structure responsible for executing imaginative functions. In line with these constraints, we developed five distinct functions to fulfill the requirements. We allocated specific components for each function, followed by an architectural proposal aligning each component with a corresponding brain organ. Results In the proposed architecture, the distributed memory component, associated with the neocortex, realizes the representation and execution function; the imaginary zone maker component, associated with the claustrum, accomplishes the dynamic-zone partitioning function; the routing conductor component, linked with the complex of thalamus and basal ganglia, performs the manipulation function; the mode memory component, related to the specific agranular neocortical area executes the mode maintenance function; and the recorder component, affiliated with the hippocampal formation, handles the history management function. Thus, we have provided a fundamental cognitive architecture of the brain that comprehensively covers the brain's imaginative capacities.
-
IEICE Communications Express 12(11) 575-578 2023年11月 査読有り最終著者責任著者
-
Frontiers in Psychology 14 2023年6月1日 査読有り最終著者責任著者Objective and accurate classification of fear levels is a socially important task that contributes to developing treatments for Anxiety Disorder, Obsessive–compulsive Disorder, Post-Traumatic Stress Disorder (PTSD), and Phobia. This study examines a deep learning model to automatically estimate human fear levels with high accuracy using multichannel EEG signals and multimodal peripheral physiological signals in the DEAP dataset. The Multi-Input CNN-LSTM classification model combining Convolutional Neural Network (CNN) and Long Sort-Term Memory (LSTM) estimated four fear levels with an accuracy of 98.79% and an F1 score of 99.01% in a 10-fold cross-validation. This study contributes to the following; (1) to present the possibility of recognizing fear emotion with high accuracy using a deep learning model from physiological signals without arbitrary feature extraction or feature selection, (2) to investigate effective deep learning model structures for high-accuracy fear recognition and to propose Multi-Input CNN-LSTM, and (3) to examine the model’s tolerance to individual differences in physiological signals and the possibility of improving accuracy through additional learning.
-
IEICE Communications Express 11(10) 667-672 2022年10月1日 査読有り最終著者責任著者
-
Journal of St. Marianna University 13(2) 95-100 2022年 査読有り
-
Journal of Information Processing 30 718-728 2022年 査読有り最終著者責任著者
-
Advances in Intelligent Systems and Computing 213-223 2022年 査読有り招待有り最終著者責任著者
-
Advances in Intelligent Systems and Computing 154-164 2022年 査読有り招待有り最終著者責任著者
-
Advances in Intelligent Systems and Computing 216-223 2021年 査読有り招待有り最終著者責任著者
-
Advances in Intelligent Systems and Computing 13-24 2021年 査読有り招待有り最終著者責任著者
-
Communications in Computer and Information Science abs/2101.03724 16-29 2021年 査読有り招待有り最終著者責任著者
-
Proceedings of the Annual Conference of JSAI, 2021 JSAI2021, 35rd Annual Conference, 2021 1N2-IS-5a-03 2021年 査読有り最終著者責任著者
-
Proceedings of the Annual Conference of JSAI, JSAI2021, 35rd Annual Conference, 2021 2N3-IS-2b-04 2021年 査読有り最終著者責任著者
-
Proceedings of the Annual Conference of JSAI, 2021 JSAI2021, 35rd Annual Conference, 2021 4N3-IS-1b-03 2021年 査読有り最終著者責任著者
-
Advances in Intelligent Systems and Computing JSAI2019 278-290 2020年2月4日 査読有り招待有り最終著者責任著者
-
Brain Sciences 10(1) 28-28 2020年1月5日 査読有り最終著者責任著者Path integration is one of the functions that support the self-localization ability of animals. Path integration outputs position information after an animal’s movement when initial-position and movement information is input. The core region responsible for this function has been identified as the medial entorhinal cortex (MEC), which is part of the hippocampal formation that constitutes the limbic system. However, a more specific core region has not yet been identified. This research aims to clarify the detailed structure at the cell-firing level in the core region responsible for path integration from fragmentarily accumulated experimental and theoretical findings by reviewing 77 papers. This research draws a novel diagram that describes the MEC, the hippocampus, and their surrounding regions by focusing on the MEC’s input/output (I/O) information. The diagram was created by summarizing the results of exhaustively scrutinizing the papers that are relative to the I/O relationship, the connection relationship, and cell position and firing pattern. From additional investigations, we show function information related to path integration, such as I/O information and the relationship between multiple functions. Furthermore, we constructed an algorithmic hypothesis on I/O information and path-integration calculation method from the diagram and the information of functions related to path integration. The algorithmic hypothesis is composed of regions related to path integration, the I/O relations between them, the calculation performed there, and the information representations (cell-firing pattern) in them. Results of examining the hypothesis confirmed that the core region responsible for path integration was either stellate cells in layer II or pyramidal cells in layer III of the MEC.
-
Proceedings of the Annual Conference of JSAI, 2020 JSAI2020, 34rd Annual Conference, 2020 1G5-ES-5-03 2020年 査読有り最終著者責任著者
-
In Proceedings of the First Workshop on Artificial Intelligence for Function, Disability, and Health co-located with the 2020 International Joint Conference onArtificial Intelligence - Pacific Rim Conference on Artificial Intelligence (IJCAI-PRICAI 2020 26-32 2020年 査読有り最終著者責任著者
-
Journal of Information Processing 28 699-710 2020年 査読有り最終著者責任著者
-
Proceedings of the Annual Conference of JSAI, 2020 JSAI2021, 34rd Annual Conference, 2020 1G3-ES-5-02-24 2020年 査読有り最終著者責任著者
-
Information 11(1) 2-2 2019年12月19日 査読有り最終著者責任著者Providing accessibility information about sidewalks for people with difficulties with moving is an important social issue. We previously proposed a fully supervised machine learning approach for providing accessibility information by estimating road surface conditions using wheelchair accelerometer data with manually annotated road surface condition labels. However, manually annotating road surface condition labels is expensive and impractical for extensive data. This paper proposes and evaluates a novel method for estimating road surface conditions without human annotation by applying weakly supervised learning. The proposed method only relies on positional information while driving for weak supervision to learn road surface conditions. Our results demonstrate that the proposed method learns detailed and subtle features of road surface conditions, such as the difference in ascending and descending of a slope, the angle of slopes, the exact locations of curbs, and the slight differences of similar pavements. The results demonstrate that the proposed method learns feature representations that are discriminative for a road surface classification task. When the amount of labeled data is 10% or less in a semi-supervised setting, the proposed method outperforms a fully supervised method that uses manually annotated labels to learn feature representations of road surface conditions.
-
Information 10(3) 114-114 2019年3月15日 査読有り筆頭著者責任著者Recent expansion of intelligent gadgets, such as smartphones and smart watches, familiarizes humans with sensing their activities. We have been developing a road accessibility evaluation system inspired by human sensing technologies. This paper introduces our methodology to estimate road accessibility from the three-axis acceleration data obtained by a smart phone attached on a wheelchair seat, such as environmental factors, e.g., curbs and gaps, which directly influence wheelchair bodies, and human factors, e.g., wheelchair users’ feelings of tiredness and strain. Our goal is to realize a system that provides the road accessibility visualization services to users by online/offline pattern matching using impersonal models, while gradually learning to improve service accuracy using new data provided by users. As the first step, this paper evaluates features acquired by the DCNN (deep convolutional neural network), which learns the state of the road surface from the data in supervised machine learning techniques. The evaluated results show that the features can capture the difference of the road surface condition in more detail than the label attached by us and are effective as the means for quantitatively expressing the road surface condition. This paper developed and evaluated a prototype system that estimated types of ground surfaces focusing on knowledge extraction and visualization.
-
Proceedings of the Annual Conference of JSAI, 2019 JSAI2019, 33rd Annual Conference, 2019(Session ID 4D3-E-2-04,) 4D3E204, 2019年 査読有り最終著者責任著者
-
The 12th ICME International Conference on Complex Medical Engineering 2018年9月 査読有り最終著者責任著者
-
Neuroinformatics 2018 poster 2018年 査読有り
-
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence 1930-1936 2017年8月19日 査読有り
-
人工知能学会論文誌 32(4) A-GB5_1-12 2017年8月17日 査読有り
-
Lecture Notes in Computer Science 366-378 2017年 査読有り招待有り筆頭著者責任著者
-
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS E99D(4) 1153-1161 2016年4月 査読有り
-
UbiComp and ISWC 2015 - Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and the Proceedings of the 2015 ACM International Symposium on Wearable Computers 57-60 2015年9月7日 査読有り
-
Road Sensing: Personal Sensing and Machine Learning for Development of Large Scale Accessibility MapASSETS'15: PROCEEDINGS OF THE 17TH INTERNATIONAL ACM SIGACCESS CONFERENCE ON COMPUTERS & ACCESSIBILITY 335-336 2015年 査読有り
-
6TH INTERNATIONAL CONFERENCE ON EMERGING UBIQUITOUS SYSTEMS AND PERVASIVE NETWORKS (EUSPN 2015)/THE 5TH INTERNATIONAL CONFERENCE ON CURRENT AND FUTURE TRENDS OF INFORMATION AND COMMUNICATION TECHNOLOGIES IN HEALTHCARE (ICTH-2015) 63 74-81 2015年 査読有り
-
JOURNAL OF ELECTRONIC TESTING-THEORY AND APPLICATIONS 29(3) 415-429 2013年6月 査読有り最終著者責任著者
-
AAAI Spring Symposium Series 2013 2013年3月 査読有り筆頭著者最終著者責任著者
-
AAAI Spring Symposium Series 2013 2013年3月 査読有り最終著者責任著者
-
AAAI Spring Symposium Series 2013 2013年3月 査読有り最終著者責任著者
-
Proceedings of the 15th International ACM SIGACCESS Conference on Computers and Accessibility, ASSETS 2013 2013年 査読有り最終著者責任著者
-
Proceedings of the 15th International ACM SIGACCESS Conference on Computers and Accessibility, ASSETS 2013 2013年 査読有り最終著者責任著者
-
Proceedings - IEEE 13th International Conference on Data Mining Workshops, ICDMW 2013 680-687 2013年 査読有り
-
IDW/AD '12: PROCEEDINGS OF THE INTERNATIONAL DISPLAY WORKSHOPS, PT 1 19 797-798 2012年 招待有り
-
ASSETS'12 - Proceedings of the 14th International ACM SIGACCESS Conference on Computers and Accessibility 271-272 2012年 査読有り
-
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7458 157-169 2012年 査読有り
-
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL 7(5B) 2897-2906 2011年5月 査読有り
-
2011 IEEE REGION 10 CONFERENCE TENCON 2011 573-577 2011年 査読有り
MISC
120講演・口頭発表等
202所属学協会
7共同研究・競争的資金等の研究課題
16-
日本学術振興会 科学研究費助成事業 2025年4月 - 2028年3月
-
上智大学 上智大学学術研究特別推進費 2023年7月 - 2026年3月
-
日本学術振興会 科学研究費助成事業 2023年6月 - 2026年3月
-
日本学術振興会 科学研究費助成事業 2023年4月 - 2026年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(B) 2020年4月 - 2023年3月