研究者業績
基本情報
- 所属
- 上智大学 理工学部 機能創造理工学科 助教慶應義塾大学 自然科学研究教育センター 客員助教
- 学位
- PhD(2015年10月 Technische Universität Dresden, Germany)Master’s Degree in Physics(2009年7月 University of Salerno (Italy))
- 研究者番号
- 20799861
- ORCID ID
https://orcid.org/0000-0002-9545-3314- J-GLOBAL ID
- 201901016585667985
- Researcher ID
- J-7156-2015
- researchmap会員ID
- B000380891
- 外部リンク
主要な研究キーワード
7主要な研究分野
3主要な経歴
4-
2019年12月 - 現在
-
2019年4月 - 2019年11月
-
2017年2月 - 2019年3月
-
2014年2月 - 2016年10月
主要な学歴
2主要な論文
29-
Progress of Theoretical and Experimental Physics 2025(3) 2025年2月13日 査読有り筆頭著者責任著者Abstract Topological zero modes in topological insulators or superconductors are exponentially localized at the phase transition between a topologically trivial and a topologically nontrivial phase. These modes are solutions of a Jackiw–Rebbi equation modified with an additional term which is quadratic in the momentum. Moreover, localized fermionic modes can also be induced by harmonic potentials in superfluids and superconductors or in atomic nuclei. Here, by using inverse methods, we consider in the same framework exponentially localized zero modes, as well as Gaussian modes induced by harmonic potentials (with superexponential decay) and polynomially decaying modes (with subexponential decay), and derive the explicit and analytical form of the modified Jackiw–Rebbi equation (and of the Schrödinger equation) which admits these modes as solutions. We find that the asymptotic behavior of the mass term is crucial in determining the decay properties of the modes. Furthermore, these considerations naturally extend to the non-Hermitian regime. These findings allow us to classify and understand topological and nontopological boundary modes in topological insulators and superconductors.
-
Progress of Theoretical and Experimental Physics 2025(2) 2024年12月10日 査読有り筆頭著者責任著者Abstract Topology describes global quantities invariant under continuous deformations, such as the number of elementary excitations at a phase boundary, without detailing specifics. Conversely, differential laws are needed to understand the physical properties of these excitations, such as their localization and spatial behavior. For instance, topology mandates the existence of solitonic zero-energy modes at the domain walls between topologically inequivalent phases in topological insulators and superconductors. However, the spatial dependence of these modes is only known in the idealized (and unrealistic) case of a sharp domain wall. Here, we find the analytical solutions of these zero-modes by assuming a smooth and exponentially-confined domain wall. This allows us to characterize the zero-modes using a few length scales: the domain wall width, the exponential decay length, and oscillation wavelength. These quantities define distinct regimes: featureless modes with “no hair” at sharp domain walls, and nonfeatureless modes at smooth domain walls, respectively, with “short hair”, i.e., featureless at long distances, and “long hair”, i.e., nonfeatureless at all length scales. We thus establish a universal relation between the bulk excitation gap, decay rate, and oscillation momentum of the zero modes, which quantifies the bulk-boundary correspondence in terms of experimentally measurable physical quantities. Additionally, we reveal an unexpected duality between topological zero modes and Shockley modes, unifying the understanding of topologically-protected and nontopological boundary modes. These findings shed some new light on the localization properties of edge modes in topological insulators and Majorana zero modes in topological superconductors and on the differences and similarities between topological and nontopological zero modes in these systems.
-
npj Quantum Materials 9(59) 2024年8月10日 査読有り筆頭著者責任著者Majorana zero modes have gained significant interest due to their potential applications in topological quantum computing and in the realization of exotic quantum phases. These zero-energy quasiparticle excitations localize at the vortex cores of two-dimensional topological superconductors or at the ends of one-dimensional topological superconductors. Here we describe an alternative platform: a two-dimensional topological superconductor with inhomogeneous superconductivity, where Majorana modes localize at the ends of topologically nontrivial one-dimensional stripes induced by the spatial variations of the order parameter phase. In certain regimes, these Majorana modes hybridize into a single highly nonlocal state delocalized over spatially separated points, with exactly zero energy at finite system sizes and with emergent quantum-mechanical supersymmetry. We then present detailed descriptions of braiding and fusion protocols and showcase the versatility of our proposal by suggesting possible setups which can potentially lead to the realization Yang-Lee anyons and the Sachdev-Ye-Kitaev model.
-
Journal of Mathematical Physics 65(071903) 2024年7月24日 査読有り責任著者The Hofstadter model allows to describe and understand several phenomena in condensed matter such as the quantum Hall effect, Anderson localization, charge pumping, and flat-bands in quasiperiodic structures, and is a rare example of fractality in the quantum world. An apparently unrelated system, the relativistic Toda lattice, has been extensively studied in the context of complex nonlinear dynamics, and more recently for its connection to supersymmetric Yang-Mills theories and topological string theories on Calabi-Yau manifolds in high-energy physics. Here we discuss a recently discovered spectral relationship between the Hofstadter model and the relativistic Toda lattice which has been later conjectured to be related to the Langlands duality of quantum groups. Moreover, by employing similarity transformations compatible with the quantum group structure, we establish a formula parametrizing the energy spectrum of the Hofstadter model in terms of elementary symmetric polynomials and Chebyshev polynomials. The main tools used are the spectral duality of tridiagonal matrices and the representation theory of the elementary quantum group.
-
Proceedings of the 29th International Conference on Low Temperature Physics (LT29) 2023年5月22日 査読有り筆頭著者責任著者
-
Journal of Applied Physics 132(23) 231101-231101 2022年12月21日 査読有り招待有り筆頭著者最終著者責任著者Majorana bound states are quasiparticle excitations localized at the boundaries of a topologically nontrivial superconductor. They are zero-energy, charge-neutral, particle–hole symmetric, and spatially-separated end modes which are topologically protected by the particle–hole symmetry of the superconducting state. Due to their topological nature, they are robust against local perturbations and, in an ideal environment, free from decoherence. Furthermore, unlike ordinary fermions and bosons, the adiabatic exchange of Majorana modes is noncommutative, i.e., the outcome of exchanging two or more Majorana modes depends on the order in which exchanges are performed. These properties make them ideal candidates for the realization of topological quantum computers. In this tutorial, I will present a pedagogical review of 1D topological superconductors and Majorana modes in quantum nanowires. I will give an overview of the Kitaev model and the more realistic Oreg–Lutchyn model, discuss the experimental signatures of Majorana modes, and highlight their relevance in the field of topological quantum computation. This tutorial may serve as a pedagogical and relatively self-contained introduction for graduate students and researchers new to the field, as well as an overview of the current state-of-the-art of the field and a reference guide to specialists.
-
Communications Physics 5(1) 2022年12月 査読有り筆頭著者責任著者Abstract Realizing Majorana modes in topological superconductors, i.e., the condensed-matter counterpart of Majorana fermions in particle physics, may lead to a major advance in the field of topologically-protected quantum computation. Here, we introduce one-dimensional, counterpropagating, and dispersive Majorana modes as bulk excitations of a periodic chain of partially-overlapping, zero-dimensional Majorana modes in proximitized nanowires via periodically-modulated fields. This system realizes centrally-extended quantum-mechanical supersymmetry with spontaneous partial supersymmetry breaking. The massless Majorana modes are the Nambu-Goldstone fermions (Goldstinos) associated with the spontaneously broken supersymmetry. Their experimental fingerprint is a dip-to-peak transition in the zero-bias conductance, which is generally not expected for Majorana modes overlapping at a finite distance. Moreover, the Majorana modes can slide along the wire by applying a rotating magnetic field, realizing a “Majorana pump”. This may suggest new braiding protocols and implementations of topological qubits.
-
Physical Review B 105(21) 2022年6月28日 査読有り筆頭著者責任著者
-
Journal of Physics: Condensed Matter 2022年1月6日 査読有り招待有り筆頭著者責任著者
-
Nature Physics 17(7) 844-849 2021年4月29日 査読有り
-
Physical Review Research 2(4) 2020年12月2日 査読有り筆頭著者責任著者
-
Physical Review B 100(22) 2019年12月5日 査読有り筆頭著者責任著者
-
Physical Review B 99(205435) 2019年5月29日 査読有り
-
European Physical Journal: Special Topics 227(12) 1291-1294 2018年12月1日 査読有り
-
Beilstein Journal of Nanotechnology 9(1) 1705-1714 2018年 査読有り筆頭著者責任著者
-
European Physical Journal: Special Topics 226(12) 2781-2791 2017年7月1日 査読有り筆頭著者責任著者
-
IEEE Transactions on Applied Superconductivity 27(4) 2017年6月 査読有り
-
Physical Review B 95(14) 2017年4月 査読有り筆頭著者責任著者
-
Physical Review B 93(220507) 2016年6月20日 査読有り筆頭著者責任著者
-
Scientific Reports 6 25386-25386 2016年5月6日 査読有り筆頭著者責任著者
-
Physical Review B - Condensed Matter and Materials Physics 91(125411) 2015年3月10日 査読有り筆頭著者責任著者
-
Physical Review Letters 110(11) 2013年3月14日 査読有り筆頭著者
-
Physical Review Letters 109(117401) 2012年9月14日 査読有り筆頭著者
MISC
3主要な講演・口頭発表等
40-
Yukawa Institute for Theoretical Physics, Kyoto 2024年 招待有り
-
Shibaura Institute of Technology, Tokyo 2024年 招待有り
-
The 2nd young researchers’ workshop of the Extreme Universe Collaboration 2024年
-
APS March Meeting 2024年
-
JPS Spring Meeting 2024年
-
Max Planck Institute for the Physics of Complex Systems, Dresden, Germany 2023年 招待有り
-
APS March Meeting 2023年
-
DPG Spring Meeting, Dresden, Germany 2023年
-
DPG Spring Meeting, Dresden, Germany 2023年
-
Conference of the Condensed Matter Division of the European Physical Society, CMD30 and FISMAT (joint conference), Milan, Italy 2023年
-
YIPQS workshop Quantum Information, Quantum Matter and Quantum Gravity, YKIS conference Foundations and Developments of Quantum Information Theory 2023年
-
workshop on Inhomogeneous superconductivity and superfluidity, Tokyo Institute of Technology 2022年 招待有り
-
29th International Conference on Low Temperature Physics (LT29), Sapporo, Japan 2022年
-
International Conference on Ultralow Temperature Physics (ULT), Otaru, Japan 2022年
-
YIPQS Novel Quantum States in Condensed Matter workshop (NQS2022), Yukawa Institute for Theoretical Physics 2022年
-
YITP workshop Theoretical studies of topological phases of matter,, Kyoto 2021年 招待有り
-
Conference of the Condensed Matter Division of the European Physical Society, CMD2020GEFES, Madrid, Spain (online) 2020年
-
Kyoto University, Japan 2019年 招待有り
-
18th RIKEN Interdisciplinary Exchange and Discovery Evening 2019年 招待有り
-
4th SuperFox conference on Superconductivity and Functional Oxides, University of Salerno, Italy 2018年 招待有り
-
16th RIKEN Interdisciplinary Exchange and Discovery Evening 2017年 招待有り
-
UFOX - Unveiling complex phenomena in Functional OXides, University of Salerno, Italy 2016年
-
Conference of the Condensed Matter Division of the European Physical Society (CMD26), Groningen, The Netherlands 2016年
-
TO-BE Fall meeting (Towards Oxide-Based Electronics), Ljubljana, Slovenia 2016年
-
RIKEN, Saitama, Japan 2016年 招待有り
-
DPG Spring Meeting, Berlin, Germany 2015年
-
DPG Spring Meeting, Berlin, Germany 2015年
-
TOP-SPIN Workshop Spin and Topological phenomena in nanostructures, University of Salerno, Italy 2015年
-
FISMAT, Italian National Conference on Condensed Matter Physics, Palermo, Italy 2015年
-
DPG Spring Meeting, Regensburg, Germany 2013年
-
MAMA-Trend: Trends, challenges and emergent new phenomena in multi-functional materials, Sorrento, Italy 2013年
-
DPG Spring Meeting, Berlin, Germany 2012年
主要な担当経験のある科目(授業)
2-
2023年4月 - 2023年5月Majorana modes for topological quantum computation (University of Salerno)
-
2013年4月 - 2013年7月Grundpraktikum III (experimental physics laboratory, quantum phenomena) (Technische Universität Dresden, Germany,)
主要な所属学協会
2主要な共同研究・競争的資金等の研究課題
2-
日本学術振興会 科学研究費助成事業 若手研究 2023年4月 - 2027年3月
-
日本学術振興会 科学研究費助成事業 若手研究 2020年4月 - 2023年3月
主要な学術貢献活動
8主要なメディア報道
9-
Kudos https://www.growkudos.com/publications/10.1063%252F5.0202635/reader 2024年7月 インターネットメディア
-
Kudos https://www.growkudos.com/publications/10.1063%25252F5.0102999 2022年12月 インターネットメディア
-
Journal of Applied Physics https://pubs.aip.org/jap/collection/428696/2022-Early-Career-Investigator-Selection 2022年 インターネットメディア
-
東京大学大学院数理科学研究科理学部数学科学術ニュース&インフォメーション https://www.ms.u-tokyo.ac.jp/kouhou/doc/2021-04-30kenkyuseika_j-Pasquale_Marra.pdf 2021年4月 インターネットメディア
-
慶應義塾大学自然科学研究教育センター https://www.sci.keio.ac.jp/news/7070/ 2021年4月 インターネットメディア
-
https://www.kyoto-u.ac.jp/ja/research-news/2021-04-30-1 2021年4月 インターネットメディア
-
CNR (Italian National research council) SPIN https://www.spin.cnr.it/research/highlights/highlights-2016 2016年 インターネットメディア