研究者業績

中島 俊樹

ナカシマ トシキ  (Nakashima Toshiki)

基本情報

所属
上智大学 理工学部情報理工学科 教授
学位
博士(理学)(京都大学)

連絡先
toshikisophia.ac.jp
研究者番号
60243193
J-GLOBAL ID
200901093297244007
researchmap会員ID
1000030180

(研究テーマ)
量子群の表現論--幾何結晶,結晶基底


学歴

 2

論文

 59
  • Toshiki Nakashima
    JOURNAL OF ALGEBRA 189(1) 150-186 1997年3月  査読有り
  • Toshiki Nakashima
    COMMUNICATIONS IN MATHEMATICAL PHYSICS 164(2) 239-258 1994年8月  査読有り
    We study the algebra B(q)(g) presented by Kashiwara and introduce intertwiners similar to q-vertex operators. We show that a matrix determined by 2-point functions of the intertwiners coincides with a quantum R-matrix (up to a diagonal matrix) and give the commutation relations of the intertwiners. We also introduce an analogue of the universal R-matrix for the Kashiwara algebra.
  • M KASHIWARA, Toshiki Nakashima
    JOURNAL OF ALGEBRA 165(2) 295-345 1994年4月  査読有り
    The explicit form of the crystal graphs for the finite-dimensional representations of the q-analogue of the universal enveloping algebras of type A, B, C, and D is given in terms of semi-standard tableaux and its analogues. (C) 1994 Academic Press, Inc.
  • Toshiki Nakashima
    COMMUNICATIONS IN MATHEMATICAL PHYSICS 154(2) 215-243 1993年6月  査読有り
    We shall give a generalization of the Littlewood-Richardson rule for U(q)(g) associated with the classical Lie algebras by use of crystal base. This rule describes explicitly the decomposition of tensor products of given representations.
  • M IDZUMI, T TOKIHIRO, K IOHARA, M JIMBO, T MIWA, Toshiki Nakashima
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A 8(8) 1479-1511 1993年3月  査読有り
    We study the higher spin analogs of the six-vertex model on the basis of its symmetry under the quantum affine algebra U(q)(sl2). Using the method developed recently for the XXZ spin chain, we formulate the space of states, transfer matrix, vacuum, creation/annihilation operators of particles, and local operators, purely in the language of representation theory. We find that, regardless of the level of the representation involved, the particles have spin 1/2, and that the n-particle space has an RSOS type structure rather than a simple tensor product of the one-particle space. This agrees with the picture proposed earlier by Reshetikhin.
  • SJ KANG, M KASHIWARA, KC MISRA, T MIWA, Toshiki Nakashima, A NAKAYASHIKI
    DUKE MATHEMATICAL JOURNAL 68(3) 499-607 1992年12月  査読有り
  • SJ KANG, M KASHIWARA, KC MISRA, T MIWA, Toshiki Nakashima, A NAKAYASHIKI
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE 315(4) 375-380 1992年8月  査読有り
    The one point functions of the vertex models associated with quantum affine Lie algebras are computed by using the path description of the crystal bases of integral highest weight modules.
  • SJ KANG, M KASHIWARA, KC MISRA, T MIWA, Toshiki Nakashima, A NAKAYASHIKI
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A 7(01) 449-484 1992年  査読有り
  • Toshiki Nakashima
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES 26(4) 723-733 1990年12月  査読有り
    We give a basis of the finite dimensional irreducible representation of union-q(X(n)) (X = B, C, D) with highest weight N-LAMBDA-1 (N is-an-element-of Z greater-than-or-equal-to 0,) which we call "symmetric tensor representation". This basis is orthonormal and consists of weight vectors. The action of union-q(X(n)) is given explicitly.

MISC

 8

講演・口頭発表等

 39

所属学協会

 1

共同研究・競争的資金等の研究課題

 21