研究者業績
基本情報
- 所属
- 上智大学 地球環境学研究科地球環境学専攻 教授(兼任)応用データサイエンス学位プログラム 教授
- 学位
- 修士(公衆衛生学)(ニューヨーク医科大学)博士(医学)(神戸大学)
- 研究者番号
- 10333527
- J-GLOBAL ID
- 201001083389571077
- researchmap会員ID
- 6000022599
機械・深層学習/ビッグデータを用いた応用研究
研究キーワード
1受賞
3-
2009年10月
-
2009年1月
-
2008年6月
論文
33-
Journal of Cleaner Production 495 145038-145038 2025年3月 査読有り
-
Scientific Reports 15(1) 2025年1月4日 査読有り
-
Geo-spatial Information Science DOI: 10.1080/10095020.2022.2144770 2023年1月17日 査読有り
-
The 37th Congress of Japan Association for International Health 92 2022年10月 査読有り
-
Frontiers in Public Health 10:911336. doi: 10.3389/fpubh.2022. 2022年8月3日 査読有りIntroduction: Coronavirus disease (COVID-19) rapidly spread from Wuhan, China to other parts of China and other regions/countries around the world, resulting in a pandemic due to large populations moving through the massive transport hubs connecting all regions of China via railways and a major international airport. COVID-19 will remain a threat until safe and effective vaccines and antiviral drugs have been developed, distributed, and administered on a global scale. Thus, there is urgent need to establish effective implementation of preemptive non-pharmaceutical interventions for appropriate prevention and control strategies, and predicting future COVID-19 cases is required to monitor and control the issue. Methods This study attempts to utilize a three-layer graph convolutional network (GCN) model to predict future COVID-19 cases in 190 regions and countries using COVID-19 case data, commercial flight route data, and digital maps of public transportation in terms of transnational human mobility. We compared the performance of the proposed GCN model to a multilayer perceptron (MLP) model on a dataset of COVID-19 cases (excluding the graph representation). The prediction performance of the models was evaluated using the mean squared error. Results Our results demonstrate that the proposed GCN model can achieve better graph utilization and performance compared to the baseline in terms of both prediction accuracy and stability. Discussion The proposed GCN model is a useful means to predict COVID-19 cases at regional and national levels. Such predictions can be used to facilitate public health solutions in public health responses to the COVID-19 pandemic using deep learning and data pooling. In addition, the proposed GCN model may help public health policymakers in decision making in terms of epidemic prevention and control strategies.
-
Geospatial Health 14(2) 183-194 2019年11月6日 査読有りEarly warning systems (EWS) have been proposed as a measure for controlling and preventing dengue fever outbreaks in countries where this infection is endemic. A vaccine is not available and has yet to reach the market due to the economic burden of development, introduction and safety concerns. Understanding how dengue spreads and identifying the risk factors will facilitate the development of a dengue EWS, for which a climate-based model is still needed. An analysis was conducted to examine emerging spatiotemporal hotspots of dengue fever at the township level in Taiwan, associated with climatic factors obtained from remotely sensed data in order to identify the risk factors. Machinelearning was applied to support the search for factors with a spatiotemporal correlation with dengue fever outbreaks. Three dengue fever hotspot categories were found in southwest Taiwan and shown to be spatiotemporally associated with five kinds of sea surface temperatures. Machine-learning, based on the deep AlexNet model trained by transfer learning, yielded an accuracy of 100% on an 8-fold cross-validation test dataset of longitudetime sea surface temperature images.
-
The 32nd International Symposium on Space Technology and Science (ISTS) & the 9th Nano-Satellite Symposium (NSAT) 1-3 2019年6月15日 査読有り
-
Asia Conference on Machine Learning and Computing 22-22 2018年 査読有り
-
EuroSciCon Conference on Environmental Science & Technology 21-21 2018年 査読有り
-
Joint PI Meeting of Global Environment Observation Mission FY2017 1-1 2018年 査読有り
-
2017 ICEO&SI Conference Forum 51-51 2017年 査読有り
-
The 31st International Symposium on Space Technology and Science (ISTS) 1-3 2017年 査読有り
-
Gene-Environment Interaction Analysis: Methods in Bioinformatics and Computational Biology 1-37 2016年4月6日 査読有り
-
2016 ICEO&SI Conference Forum 213-217 2016年 査読有り
-
Geospatial Health 10(2) 215-222 2015年11月26日 査読有り
-
Journal of Geophysics & Remote Sensing 3(4) 1-5 2014年11月28日 査読有り
-
日本生理人類学会誌 19(1) 13-18 2014年2月25日 査読有り
-
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives XL-8(1) 163-166 2014年 査読有り
-
Journal of Earth Science and Engineering 3(6) 371-378 2013年6月15日 査読有り
-
BMC Medical Research Methodology 12(1) 1-16 2012年 査読有り
-
日本生理人類学会誌 16(2) 99-102 2011年5月1日 査読有りDetecting natural selection would provide valuable insight into the molecular mechanisms of pathogenesis and advanced knowledge about the history of human adaptations to local environments. This study tried to detect natural selection in pigmentation candidate genes from haplotype structure as revealed by SNP analyses. We estimated the frequencies of diplotypes (combinations of the haplotypes) expected from Hardy-Weinberg equilibrium to evaluate natural selection. We also tested for correlations between the haplotypes with a high frequency and melanin content. The results indicated the possible difference of the melanin contents among the haplotypes. We suggest the possibility of natural selection to a mutation linking to the SNPs in the haplotypes. This paper also discusses future approaches to detecting natural selection in pigmentation candidate genes from haplotype structure as revealed by SNP analyses.
-
Expert Review of Molecular Diagnostics 10(8) 987-991 2010年11月 査読有り
-
Journal of the National Science Foundation of Sri Lanka 37(3) 223-225 2009年 査読有り
-
International Journal of Biological Sciences 4(2) 81-86 2008年 査読有り
-
Evolutionary Bioinformatics 3 169-178 2007年9月 査読有り
-
Journal of Physiological Anthropology and Applied Human Science 24(4) 483-486 2005年7月 査読有り
-
Thirty-fifth Joint Conference on Parasitic Diseases: The Japan-United States Cooperative Medical Science Program, Proceedings 42-43 2000年 査読有り
-
Kobe Journal of Medical Sciences 46(6) 231-243 2000年 査読有り
-
Parasitology International 48 144 1999年 査読有り
MISC
4書籍等出版物
8-
Jenny Stanford Publishing (Pan Stanford Publishing) 2016年 (ISBN: 9789814669634)
講演・口頭発表等
16-
The International Conference on Geospatial Information Science - Education, Innovation and Applications 2023 2023年10月15日 招待有り
-
The 37th Congress of Japan Association for International Health 2022年11月19日
共同研究・競争的資金等の研究課題
9-
日本学術振興会 2023年4月 - 2027年3月
-
問題複合体を対象とするデジタルアース共同利用・共同研究拠点 2022年6月 - 2024年3月
-
問題複合体を対象とするデジタルアース共同利用・共同研究拠点 2021年6月 - 2022年3月
-
問題複合体を対象とするデジタルアース共同利用・共同研究拠点 2020年7月 - 2021年3月
-
宇宙航空研究開発機構(JAXA) 第1回地球観測研究公募 2017年4月 - 2019年3月