研究者業績
					
	
	基本情報
- 所属
 - 上智大学 理工学部 機能創造理工学科 准教授
 
- 研究者番号
 - 80506733
 - ORCID ID
 
 https://orcid.org/0000-0001-5495-3884- J-GLOBAL ID
 - 202501006436463317
 - researchmap会員ID
 - R000083037
 
論文
68- 
	Physical Review B 2025年7月17日<jats:p>We explore the superconducting properties of the bilayer Hubbard model, which exhibits a high transition temperature <a:math xmlns:a="http://www.w3.org/1998/Math/MathML"><a:mo>(</a:mo><a:msub><a:mi>T</a:mi><a:mi>c</a:mi></a:msub><a:mo>)</a:mo></a:math> for an <b:math xmlns:b="http://www.w3.org/1998/Math/MathML"><b:msub><b:mi>s</b:mi><b:mo>±</b:mo></b:msub></b:math> pairing, using a cluster extension of the dynamical mean-field theory. Unlike the single-layer Hubbard model, where the <c:math xmlns:c="http://www.w3.org/1998/Math/MathML"><c:mi>d</c:mi></c:math>-wave superconductivity emerges by doping the Mott insulator, the parent state of the bilayer system is a correlated band insulator. Above <d:math xmlns:d="http://www.w3.org/1998/Math/MathML"><d:msub><d:mi>T</d:mi><d:mi>c</d:mi></d:msub></d:math>, slight hole (electron) doping introduces a striking dichotomy between electron and hole pockets: The electron (hole) pocket develops a pseudogap while the other becomes a nearly incipient band. We reveal that the superconductivity is driven by kinetic (potential) energy gain in the underdoped (overdoped) region. We also find a very short coherence length, for which we argue the relevance to multiorbital physics. Our Letter offers crucial insights into the superconductivity in the bilayer Hubbard model potentially relevant to <e:math xmlns:e="http://www.w3.org/1998/Math/MathML"><e:mrow><e:msub><e:mi>La</e:mi><e:mn>3</e:mn></e:msub><e:msub><e:mi>Ni</e:mi><e:mn>2</e:mn></e:msub><e:msub><e:mi mathvariant="normal">O</e:mi><e:mn>7</e:mn></e:msub></e:mrow></e:math>.</jats:p>
 - 
	Nature Communications 2025年4月18日
 - 
	Physical Review B 2025年2月28日
 - 
	Proceedings of the National Academy of Sciences 2025年1月7日<jats:p> The pseudogap phenomena have been a long-standing mystery of the cuprate high-temperature superconductors. The pseudogap in the electron-doped cuprates has been attributed to band folding due to antiferromagnetic (AFM) long-range order or short-range correlation. We performed an angle-resolved photoemission spectroscopy study of the electron-doped cuprates Pr <jats:sub> 1.3− <jats:italic>x</jats:italic> </jats:sub> La <jats:sub>0.7</jats:sub> Ce <jats:sub> <jats:italic>x</jats:italic> </jats:sub> CuO <jats:sub>4</jats:sub> showing spin-glass, disordered AFM behaviors, and superconductivity at low temperatures and, by measurements with fine momentum cuts, found that the gap opens on the unfolded Fermi surface rather than the AFM Brillouin zone boundary. The gap did not show a node, following the full symmetry of the Brillouin zone, and its magnitude decreased from the zone-diagonal to ( <jats:italic>π</jats:italic> ,0) directions, opposite to the hole-doped case. These observations were reproduced by cluster dynamical-mean-field-theory calculation, which took into account electron correlation precisely within a (CuO <jats:sub>2</jats:sub> ) <jats:sub>4</jats:sub> cluster. The present experimental and theoretical results are consistent with the mechanism that electron or hole doping into a Mott insulator creates an in-gap band that is separated from the upper or lower Hubbard band by the pseudogap. </jats:p>
 
共同研究・競争的資金等の研究課題
11- 
	日本学術振興会 科学研究費助成事業 2025年4月 - 2028年3月
 - 
	日本学術振興会 科学研究費助成事業 2025年4月 - 2028年3月
 - 
	日本学術振興会 科学研究費助成事業 2025年4月 - 2028年3月
 - 
	日本学術振興会 科学研究費助成事業 2023年4月 - 2025年3月
 - 
	日本学術振興会 科学研究費助成事業 2022年4月 - 2024年3月
 - 
	日本学術振興会 科学研究費助成事業 2019年4月 - 2023年3月
 - 
	日本学術振興会 科学研究費助成事業 2020年4月 - 2022年3月
 - 
	日本学術振興会 科学研究費助成事業 2016年5月 - 2021年3月
 - 
	日本学術振興会 科学研究費助成事業 2017年4月 - 2020年3月
 - 
	日本学術振興会 科学研究費助成事業 2014年4月 - 2017年3月
 - 
	日本学術振興会 科学研究費助成事業 2010年 - 2012年