研究者業績
基本情報
- 所属
- 上智大学 理工学部情報理工学科 教授
- 学位
- 博士(工学)(上智大学)
- 研究者番号
- 90407338
- J-GLOBAL ID
- 201301073146868965
- researchmap会員ID
- 7000004362
- 外部リンク
研究分野
1論文
141-
IEEE Access 13 103405-103416 2025年 査読有り責任著者
-
Lengua y Sociedad 23(2) 1047-1068 2024年12月30日 査読有り責任著者La rápida globalización y la creciente necesidad de comunicación interlingüística requieren corpus modernos y en tiempo real para ayudar a los estudiantes de idiomas. Los métodos tradicionales para crear dichos corpus, especialmente en español, son inadecuados debido a su incapacidad para procesar la gran cantidad de datos no estructurados disponibles en internet. En este estudio se exploran las metodologías de inteligencia artificial (IA) para la adquisición automática de documentos en español de la web, preprocesándolos y clasificándolos con el fin de construir un corpus vasto y flexible para el aprendizaje del español. La investigación aplica el rastreo web mediante el framework Scrapy para recopilar datos, que luego se limpian y clasifican utilizando modelos avanzados de procesamiento del lenguaje natural (PLN). En concreto, el estudio emplea el algoritmo BERT (Bidirectional Encoder Representations from Transformers) y su variante mejorada RoBERTa para lograr la clasificación de documentos. Mediante una combinación de técnicas de aumento de datos y modelos de aprendizaje profundo, el estudio logra una alta precisión en la clasificación de texto en español, lo que demuestra el potencial del uso de la IA para superar las limitaciones de los enfoques tradicionales de creación de corpus.
-
2024 6th International Workshop on Artificial Intelligence and Education (WAIE) 379-383 2024年9月28日 査読有り責任著者
-
2024 6th International Workshop on Artificial Intelligence and Education (WAIE) 353-357 2024年9月28日 査読有り責任著者
-
2024 6th International Workshop on Artificial Intelligence and Education (WAIE) 71-75 2024年9月28日 査読有り責任著者
-
2024 6th International Workshop on Artificial Intelligence and Education (WAIE) 364-368 2024年9月28日 査読有り責任著者
-
2024 4th Asian Conference on Innovation in Technology (ASIANCON) 1-6 2024年8月23日 査読有り責任著者
-
Soft Computing 28(17-18) 9905-9919 2024年7月20日 査読有り
-
Algorithms 17(5) 180-180 2024年4月28日 査読有りResource Constraint Project Scheduling Problems with Discounted Cash Flows (RCPSPDC) focuses on maximizing the net present value by summing the discounted cash flows of project activities. An extension of this problem is the Payment at Event Occurrences (PEO) scheme, where the client makes multiple payments to the contractor upon completion of predefined activities, with additional final settlement at project completion. Numerous approximation methods such as metaheuristics have been proposed to solve this NP-hard problem. However, these methods suffer from parameter control and/or the computational cost of correcting infeasible solutions. Alternatively, approximate dynamic programming (ADP) sequentially generates a schedule based on strategies computed via Monte Carlo (MC) simulations. This saves the computations required for solution corrections, but its performance is highly dependent on its strategy. In this study, we propose the hybridization of ADP with three different metaheuristics to take advantage of their combined strengths, resulting in six different models. The Estimation of Distribution Algorithm (EDA) and Ant Colony Optimization (ACO) were used to recommend policies for ADP. A Discrete cCuckoo Search (DCS) further improved the schedules generated by ADP. Our experimental analysis performed on the j30, j60, and j90 datasets of PSPLIB has shown that ADP–DCS is better than ADP alone. Implementing the EDA and ACO as prioritization strategies for Monte Carlo simulations greatly improved the solutions with high statistical significance. In addition, models with the EDA showed better performance than those with ACO and random priority, especially when the number of events increased.
-
IEEE Open Journal of the Computer Society 5 624-635 2024年 査読有り
-
IEEE Access 12 190445-190453 2024年 査読有り責任著者
-
AITI 20(2) 125-134 2023年8月25日 査読有り
-
Connection Science 35(1) 2023年3月8日 査読有り
-
2023 International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT) 53 524-530 2023年1月5日 査読有り責任著者
-
Proceedings of the 2022 5th Artificial Intelligence and Cloud Computing Conference 53 66-72 2022年12月17日 査読有り
-
Indian Journal of Computer Science and Engineering 13(5) 1483-1496 2022年10月20日 査読有り
-
The Chinese Journal of Artificial Intelligence 1(2) 2022年9月 査読有りBackground: Examination Timetabling Problem which tries to find an optimal examination schedule for schools, colleges, and universities, is a well-known NP-hard problem. This paper presents a Genetic Algorithm variant approach to solve a specific examination timetabling problem common in Japanese colleges and universities. Methods: The proposed algorithm uses direct chromosome representation Genetic Algorithm and implements constraint-based initialization and constraint-based crossover operations to satisfy the hard and soft constraints. An Island model with varying crossover and mutation probabilities and an improvement approach called pre-training are applied to the algorithm to further improve the result quality. Results: The proposed model is tested on synthetic as well as real datasets obtained from Sophia University, Japan and shows acceptable results. The algorithm was fine-tuned with different penalty points combinations and improvement combinations. Conclusion: The comparison results support the idea that the initial population pre-training and the island model are effective approaches to improve the result quality of the proposed model. Although the current island model used only four islands, incorporating greater number of islands, and some other diversity maintenance approaches such as memetic structures are expected to further improve the diversity and the result quality of the proposed algorithm on large scale problems.
-
International Conference on Unmanned Aircraft Systems 2022年6月 査読有り
-
2022 10th International Conference on Information and Education Technology (ICIET) 14 409-414 2022年4月9日 査読有り
-
10th International Conference on Information and Education Technology (ICIET) 2022年4月 査読有り
-
International Journal of Big Data Intelligence and Applications 2(1) 21-38 2022年3月9日 査読有り<p>In this paper, the authors have proposed a computationally efficient, robust, and lightweight system for gait recognition. The proposed system contains two main stages: In the first stage, a classification network identifies optical flow corners in the normalized silhouette and calculates the distances traveled in every viewpoint which is further used by a regression model to identify the viewing angle. In the second stage, a feature extraction network computes the gait energy image (GEI) for every viewpoint and then uses principal component analysis (PCA) to extract low dimensional feature vectors from these GEI images. Finally, a multi-layer perceptron model is trained using the extracted principal components for every viewing angle. The performance of a system is comprehensively evaluated on the CASIA B and OULP gait dataset. The experimental results demonstrate the superior performance of a proposed system in viewing angle classification (100% accuracy), gait recognition (100% accuracy in normal walk), computational efficiency, robustness to clothing, and viewing angle variation.</p>
-
1423 57-68 2022年2月26日 査読有り
-
Proceedings of the Annual Conference of JSAI 35th Annual Conference 3(1) 37-52 2022年1月24日 査読有り
-
Lecture Notes in Networks and Systems 311-322 2021年10月25日 査読有り
-
SN Computer Science 2(6) 2021年10月20日 査読有り
-
International Conference on Artificial Intelligence and Software Engineering 1-8 2021年9月 査読有り
-
2nd International Conference on Innovative and Creative Information Technology 2021 2021年9月 査読有り
-
Engineering Applications of Artificial Intelligence 104 104370-104370 2021年9月 査読有り
-
AI 2(3) 366-380 2021年8月19日 査読有りResearch on autonomous obstacle avoidance of drones has recently received widespread attention from researchers. Among them, an increasing number of researchers are using machine learning to train drones. These studies typically adopt supervised learning or reinforcement learning to train the networks. Supervised learning has a disadvantage in that it takes a significant amount of time to build the datasets, because it is difficult to cover the complex and changeable drone flight environment in a single dataset. Reinforcement learning can overcome this problem by using drones to learn data in the environment. However, the current research results based on reinforcement learning are mainly focused on discrete action spaces. In this way, the movement of drones lacks precision and has somewhat unnatural flying behavior. This study aims to use the soft-actor-critic algorithm to train a drone to perform autonomous obstacle avoidance in continuous action space using only the image data. The algorithm is trained and tested in a simulation environment built by Airsim. The results show that our algorithm enables the UAV to avoid obstacles in the training environment only by inputting the depth map. Moreover, it also has a higher obstacle avoidance rate in the reconfigured environment without retraining.
-
Artificial Intelligence for Future Generation Robotics 93-118 2021年 査読有り
-
International Journal of Electrical Power & Energy Systems 124 106295-106295 2021年1月 査読有り
-
American Journal of Computer Science and Technology 4(3) 75-75 2021年 査読有り
-
Computer Science & Information Technology (CS & IT) 1-12 2020年12月12日 査読有りThis paper presents a Genetic Algorithm approach to solve a specific examination timetabling problem which is common in Japanese Universities. The model is programmed in Excel VBA programming language, which can be run on the Microsoft Office Excel worksheets directly. The model uses direct chromosome representation. To satisfy hard and soft constraints, constraint-based initialization operation, constraint-based crossover operation and penalty points system are implemented. To further improve the result quality of the algorithm, this paper designed an improvement called initial population pre-training. The proposed model was tested by the real data from Sophia University, Tokyo, Japan. The model shows acceptable results, and the comparison of results proves that the initial population pre-training approach can improve the result quality.
-
2020 IEEE International Conference for Innovation in Technology (INOCON) 7 1-4 2020年11月6日 査読有り
-
IT Professional 22(6) 59-66 2020年11月1日 査読有り
-
34th Annual International Conference of the Japanese Society for Artificial Intelligence in Japan 2020年6月 査読有り
-
Advances in Computational Intelligence and Robotics 263-282 2020年 査読有りThis chapter proposes the application of a discrete version of the Fireworks Algorithm (FWA) and a novel PSO-FWA hybrid algorithm to optimize the energy efficiency of a metro railway line. This optimization consists in determining the optimal configuration of the Energy Storage Systems (ESSs) to install in a railway line, including their number, location, and power (kW). The installation of the ESSs will improve the energy efficiency of the system by incrementing the use of the regenerated energy produced by the trains in the braking phases, as the ESSs will store the excess of regenerated energy and return it to the system when necessary. The results for this complex optimization problem produced by the two algorithms are excellent and authors prove that the novel PSO-FWA algorithm proposed in this chapter outperforms the standard FWA.
-
人工知能学会全国大会論文集 第 33 回全国大会 2019年6月4日 査読有り
-
Proc. 6th International Conference on Computer Science & Information Technology 45-55 2019年2月23日 査読有り
-
6th International Conference on Computer Science & Information Technology 2019年2月23日 査読有り
-
IVPAI2018 2018年8月 査読有り
MISC
2-
電子情報通信学会技術研究報告. KBSE, 知能ソフトウェア工学 103(604) 1-6 2004年12月In this paper we propose a composite-server model and make use of the knowledge of the intrinsic composition of its service providing units (personnel or equipment) to derive Qualitative knowledge-based rules for its performance evaluation. The composite server model that takes into account the composite nature of service has wider scope in its applications and can be used to represent a variety of system classes. We use this novel concept in the performance design and improvement of collaborative engineering systems. System modeling is done by Multi-Context Map (MCM) technique. MCM is a de...
-
電子情報通信学会技術研究報告. AI, 人工知能と知識処理 103(306) 15-20 2003年9月9日本論では、協調エンジニアリングシステムの性能評価・性能改善を目的とした,定性推論を含有するエキスパート・システム(ES)の設計や実施方法を提案する.ESの推論エンジンに定性推論を適応する動機は、システムのモデルであるMulti Context Map(MCM)待ち行列ネットワークにある三重の入出力コンテキストの相互作用の改善にかかわる計算量・複雑性を回避するためである.ESは、GPSSシミュレーション・データを分析して,ボトルネックを検出し,システムのMCM知識ベースを参考し,定性的規則を利用してシステム性能改善のためのパラメータ・チューニングプランを作る.このESは,協調エンジニアリングにおけるベンチマーク・システムの評価・改善に十分に達成した.
書籍等出版物
2-
CRC Press 2021年 (ISBN: 9780367638368)
講演・口頭発表等
63-
Consultative Workshop on Encountering AI, Vatican Dicastery of Education and Culture, Rome 2024年3月22日 招待有り
-
Japan Catholic Doctors Association, Tokyo Branch 2024年3月16日 招待有り
-
College of Commerce and Business Administration, University of Santo Tomas, Manila 2023年5月 招待有り