研究者業績
基本情報
- 所属
- 上智大学 理工学部機能創造理工学科 教授
- 学位
- 学士(東北大学)修士(東北大学)博士(工学)(東北大学)
- 研究者番号
- 60361127
- J-GLOBAL ID
- 201301010164130335
- researchmap会員ID
- 7000004361
(研究テーマ)
再生可能エネルギー由来電力を安定化する液体水素およびMgB2 超電導体を用いた電力貯蔵装置に関する研究
研究キーワード
2受賞
2論文
124-
IEEE Transactions on Applied Superconductivity 35(5) 1-5 2025年8月 査読有り筆頭著者
-
IEEE Transactions on Applied Superconductivity 2025年
-
IEEE Transactions on Applied Superconductivity 35(5) 2025年
-
IEEE Transactions on Applied Superconductivity 34(5) 1-4 2024年8月 査読有り
-
IEEE Transactions on Applied Superconductivity 34(5) 1-5 2024年8月 査読有り
-
IEEE Transactions on Applied Superconductivity 34(5) 1-6 2024年8月 査読有り
-
IEEE Transactions on Applied Superconductivity 34(5) 8400505-8400505 2024年2月 査読有り
-
IEEE Transactions on Applied Superconductivity 33(5) 1-5 2023年8月 査読有り
-
IEEE Transactions on Applied Superconductivity 33(5) 1-5 2023年8月 査読有り
-
IEEE Transactions on Applied Superconductivity 33(5) 8400708-8400708 2023年8月 査読有り
-
Journal of Physics: Conference Series 2545(1) 012025-012025 2023年7月1日 査読有りAbstract We have demonstrated an advanced superconducting power conditioning system, in which a superconducting magnetic energy storage (SMES) device, a generator based on a fuel cell (FC), and an electrolyzer are used to compensate for electricity fluctuations over a wide frequency range, combined with a liquid hydrogen storage system to both cool the SMES and provide pure hydrogen gas to the FC and other gas-dependent systems. To manufacture the coils for the SMES, we used MgB2, whose critical temperature is below the boiling temperature of hydrogen. We developed a 10 kJ SMES coil system indirectly cooled by liquid hydrogen using thermosyphon passive heat exchange to isolate the flammable hydrogen from the electrical components. We performed a successful demonstration of this system for both DC and AC currents ramped at different rates. In the present study, we use computer simulations involving heat balance equations to evaluate the stability of the system. The results obtained are expected to lead to the design of future large-capacity energy storage systems, such as the MJ class, which offer comparable performance to conventional NbTi SMES devices.
-
IEEE Transactions on Applied Superconductivity 2023年
-
IEEE Transactions on Applied Superconductivity 32(6) 1-5 2022年9月 査読有り
-
IEEE Transactions on Applied Superconductivity 32(6) 1-5 2022年9月 査読有り
-
IEEE Transactions on Applied Superconductivity 32(6) 1-5 2022年9月 査読有り
-
IEEE Transactions on Applied Superconductivity 32(6) 1-5 2022年9月 査読有り
-
Cryogenics 122 103420-103420 2022年3月 査読有り
-
IEEE Transactions on Applied Superconductivity 32(6) 2022年
-
IEEE Transactions on Applied Superconductivity 32(6) 1-5 2022年 査読有り
-
IEEE Transactions on Applied Superconductivity 31(5) 2021年8月1日
-
SCRIPTA MATERIALIA 199 2021年7月
-
低温工学学会誌 56(5) 269-276 2021年5月 査読有り招待有り筆頭著者The superconducting Magnetic Energy Storage (SEMS) application still has a great potential to stabilize the utility grid when the uncontrollable power generation from renewable sources increases and power flows change rapidly due to the broad introduction of high-speed response semiconductor switching devices. Along with the development of liquid hydrogen supply chain, the SMES system using MgB2 conductors also attracts great attention at this point. Although the MgB2 wires which have critical temperature of around 39 K have been commercially available with more affordable prices, their bending strain sensitivity is an issue to be solved for fabricating large-scale conductors and coils. The experience of constructing a 10-kJ SMES system using Bi2223 tapes and the successful demonstration of compensating very fast electric power fluctuations in the previous project will help us to develop a larger-scale MgB2 SMES system by investigating conductor and coil design while considering its bending strain sensitivity and mechanism of critical current deterioration to maximize its performance as one of the most promising energy storage devices, following the movement toward a CO2-free environment.
-
Journal of Physics: Conference Series 1590 012058-012058 2020年7月
-
Journal of Physics: Conference Series 1559(1) 2020年6月19日
-
TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 55(1) 36-43 2020年1月20日
-
IEEE Transaction on Applied Superconductivity 30(4) 4600905 2020年
-
IEEE Transaction on Applied Superconductivity 30(4) 6000705 2020年 査読有り
-
IEEE Transaction on Applied Superconductivity 30(4) 6000405 2020年 査読有り
-
Microstructural study on SneZn/CueTi diffusion reaction for internal tin Nb3Sn conductor developmentJournal of Alloys and Compounds 848 155465 2020年
-
SUPERCONDUCTOR SCIENCE & TECHNOLOGY 32(11) 2019年11月
-
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY 29(5) 2019年8月
-
IEEE Transactions on Applied Superconductivity 29(5) 1-5 2019年 査読有り
-
IEEE Transactions on Applied Superconductivity 29(5) 1-5 2019年 査読有り
-
Supercond. Sci. Technol. 32(3) 035011 2019年 査読有り
-
Superconducting Science and Technology 32(3) 035011 2019年 査読有り
-
IEEE Transactions on Applied Superconductivity 28(3) 1-5 2018年4月18日 査読有りSuperconducting magnetic energy storage (SMES) devices of several tens of kJ class are generally suitable for voltage compensation for microgrids, which produce and distribute electric power to restricted areas. MgB2 material has been developed with superconducting properties by decreasing the production cost. Since hydrogen energy would be widely utilized to realize society with low carbon emission and stored in liquid state for reducing its volume, the power distribution system consisting of MgB2 SMES for compensation of voltage fluctuations cooled by the liquid hydrogen would be effective by synergy effect. However, the MgB2 introduction to large-scale devices is still not enough and under investigation. Our group carried out the investigations to develop MgB<sub>2</sub>cable and pancake coil for the SMES device with specific capacity. The bending strain-sensitive characteristic of MgB2 material forces us to design the twisted conductors and pancake coils with various parameters properly within its tolerable bending strains of both before/after heat treatment.
-
IEEE Transaction on Applied Superconductivity 28(4) 6000905 2018年 査読有り
-
IEEE Transaction on Applied Superconductivity 28(3) 5700604 2018年 査読有り
-
Cryogenics 96 75-82 2018年 査読有り
-
IOP Conf. Series: Journal of Physics: Conf. Series 1054 012080 2018年 査読有り
-
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY 27(4) 2017年6月 査読有り
-
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY 26(4) 2016年6月 査読有り
-
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY 26(4) 2016年6月 査読有り
-
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY 26(4) 2016年6月 査読有り
-
IEEE Transactions on Applied Superconductivity 26(4) 2016年 査読有り
-
Plasma Fusion and Research 10 1-5 2015年 査読有り
-
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY 24(3) 2014年6月 査読有り
MISC
69-
電気学会研究会資料. ASC = The papers of Technical Meeting on "Application of Superconductivity", IEE Japan / 超電導機器研究会 [編] 2022(13-28) 71-74 2022年11月15日
-
低温工学 = Journal of Cryogenics and Superconductivity Society of Japan 57(4) 241-245 2022年
-
電気学会研究会資料. ASC = The papers of Technical Meeting on "Application of Superconductivity", IEE Japan / 超電導機器研究会 [編] 2021(9-25) 69-72 2021年12月7日
-
電気学会研究会資料. MC / 超電導機器金属・セラミックス合同研究会 [編] 2019(13-19) 9-14 2019年12月19日
講演・口頭発表等
29所属学協会
2共同研究・競争的資金等の研究課題
11-
日本学術振興会 科学研究費助成事業 2021年4月 - 2024年3月
-
日本学術振興会 科学研究費助成事業 2021年4月 - 2024年3月
-
競輪とオートレースの補助事業 機械振興補助事業 振興事業補助 2021年4月 - 2022年3月
-
日本学術振興会 科学研究費助成事業 2016年4月 - 2020年3月
-
2015年4月 - 2018年3月