Curriculum Vitaes

Yusuke Fukazawa

  (深澤 佑介)

Profile Information

Affiliation
Graduate Degree Program of Applied Data Science, Sophia University

Researcher number
80776617
J-GLOBAL ID
202001012805218090
researchmap Member ID
R000003283

External link

当研究室では、機械学習および自然言語処理応用を基盤として、SNSデータ、医療データ、時空間データなど、人間活動から生み出される異種混合の実世界データを統合的に解析し、予測・推定を行う方法論の研究を行っています。
特に、SNSや医療データを用いたメンタルヘルス予測や、クマ遭遇予測・登山遭難リスク予測といった時空間リスク予測を対象に、社会・医療課題の解決に資する実践的な機械学習・自然言語処理手法の開発に取り組んでいます。クマ遭遇AI予測マップは こちら からもご覧いただけます。


Major Papers

 96
  • Rika Tanaka, Megumi Kodaka, Yusuke Fukazawa
    Web Intelligence, 23(4) 543-557, Oct 16, 2025  Peer-reviewedLast authorCorresponding author
    Detecting mental illness from short social media posts is challenging because these texts are often brief, fragmented, and lack explicit descriptions of the user’s mental state. Prior studies using encoder-based models such as BERT show promise but struggle when key contextual information is missing. To address this, we propose a method that augments posts with interpretive sentences generated by MentaLLaMA-chat, a generative model specialized in mental health, and fine-tunes BERT on the augmented dataset. We curated 1,525 Japanese posts containing the word “mental” (in katakana) from X (formerly Twitter) and manually annotated them according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria, labeling 557 posts as positive and 968 as negative. Our method improved recall by 2.4 percentage points compared to models trained on the original posts alone, while maintaining comparable accuracy and precision. Shapley Additive Explanations analysis revealed that tokens introduced by the interpretive sentences—including both negative and positive expressions—enhanced the model’s ability to identify mental-distress posts. These results demonstrate that generative-model-based text augmentation effectively provides additional context, enabling more accurate detection of mental illness indicators in short, ambiguous social media posts.
  • Makoto Watanabe, Yusuke Fukazawa
    Transactions of the Japanese Society for Artificial Intelligence, 40(5) MO25-C_1, Sep 1, 2025  Peer-reviewedLast authorCorresponding author
  • Masahiro Suzuki, Yusuke Fukazawa
    Journal of Information Processing, 33 419-428, Aug 15, 2025  Peer-reviewedLast authorCorresponding author
  • Shin Nakamoto, Yusuke Fukazawa
    International Journal of Data Science and Analytics, 20(8) 7107-7125, Jul 22, 2025  InvitedLast authorCorresponding author
  • Taeko Sato, Yusuke Fukazawa
    International Journal of Data Science and Analytics, 20(7) 6407-6425, Jun 16, 2025  Peer-reviewedLast authorCorresponding author

Presentations

 67

Teaching Experience

 4

Professional Memberships

 4

Works

 1

Research Projects

 4

Industrial Property Rights

 293

Major Media Coverage

 67