研究者業績
基本情報
研究キーワード
3経歴
7-
2024年4月 - 現在
-
2022年4月 - 2024年3月
-
2022年4月 - 2024年3月
-
2022年4月 - 2023年3月
-
2018年4月 - 2022年3月
学歴
1-
- 2016年
委員歴
18-
2023年4月 - 現在
-
2020年4月 - 現在
-
2019年4月 - 現在
受賞
13-
2020年
論文
97-
AHFE Open Access, Ergonomics In Design and Kansai Engineering 170 164-174 2025年7月 査読有り最終著者責任著者
-
Social Computing and Social Media 15786 57-69 2025年5月26日 査読有り招待有り最終著者
-
Journal of Data Science and Intelligent Systems (Online First) 1-9 2025年3月26日 査読有り最終著者責任著者
-
日本ソーシャルデータサイエンス学会論文誌 9(1) 13-18 2025年3月 査読有り最終著者責任著者
-
AHFE Open Access, Human Factors in Design, Engineering, and Computing 159 182-192 2024年12月 査読有り筆頭著者責任著者
-
Social Computing and Social Media 278-291 2024年6月1日 査読有り最終著者
-
Identification of Important Products in Electronics Retail Stores Using a Product-To-Product NetworkSocial Computing and Social Media 313-325 2024年6月1日 査読有り最終著者
-
Social Computing and Social Media 292-303 2024年6月1日 査読有り最終著者
-
Social Computing and Social Media 347-358 2024年6月1日 査読有り最終著者
-
Social Computing and Social Media 60-71 2024年6月1日 査読有り
-
オペレーションズ・リサーチ 69(2) 72-81 2024年2月 査読有り
-
Social Computing and Social Media 622-634 2023年7月9日 査読有り
-
Social Computing and Social Media 598-610 2023年7月9日 査読有り
-
Social Computing and Social Media 567-580 2023年7月9日 査読有り最終著者責任著者
-
Social Computing and Social Media 530-541 2023年7月9日 査読有り最終著者責任著者
-
Social Computing and Social Media 418-428 2023年7月9日 査読有り最終著者責任著者
-
Social Computing and Social Media 401-417 2023年7月9日 査読有り
-
Social Computing and Social Media 352-369 2023年7月9日 査読有り最終著者責任著者
-
Human Factors, Business Management and Society 97 337-344 2023年7月 査読有り最終著者責任著者The COVID-19 epidemic has drastically changed our way of life. Especially in Japan, the lodging industry was hit hard by the trend toward self-restraint in travel. The situation is now returning to what it was before the epidemic, and businesses need to review their future facility operations. The purpose of this study is to typify and understand the characteristics of lodging facilities by focusing on their revenue management methods. Specifically, we use a questionnaire of employees involved in decision-making regarding the facility. First, we performed principal component analysis on 13 question items related to current profit management among all questionnaire items. We summarized the questionnaire items into 6 principal components by this analysis. For each principal component, we interpreted the first principal component as focusing on constancy, the second principal component as focusing on demand forecasting, the third principal component as focusing on room occupancy, the fourth principal component as focusing on customer demand, the fifth principal component as focusing on competitors, and the sixth principal component as focusing on company policy.Subsequently, we performed cluster analysis using the principal component scores obtained by principal component analysis. We calculated the average principal component score for each cluster, and named and discussed each cluster with reference to the calculated value.This study allowed us to develop a classification of facilities based on their revenue management methods.
-
Human Factors, Business Management and Society 97 345-355 2023年7月 査読有り最終著者責任著者In recent years, with the spread of COVID-19 infection, the consumer market in real places such as department stores and shopping centers was hit hard. The latest consumer trend surveys indicate that what consumers are looking for in physical shops after the coronavirus has been contained is 'confidence' and 'surprise' through the experience of touching actual products. From this, it can be inferred that the insight of consumers in actual shops lies in the process leading up to the purchase, i.e. the experience value, such as how they use the shop and search for products.In this study, we conducted an experiment on consumer behavior in a department store, and proposed marketing measures unique to a real shop in accordance with consumer behavior, using data on the flow line of shop movement and questionnaire data before and after the experiment. Specifically, a series of data on the consumer's flow line from entering to leaving the shop is collected using an eye-tracking device. From the collected traffic line data, we attempt to evaluate consumer behavior from the viewpoint of purchase purpose and loyalty by using Social Network Analysis(SNA) methods.
-
オペレーションズ・リサーチ = Communications of the Operations Research Society of Japan : 経営の科学 67(9) 498-504 2022年9月 招待有り筆頭著者責任著者
-
International Journal of Advanced Computer Science and Applications 13(2) 46-55 2022年 査読有り
-
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 13315 LNCS 110-122 2022年 査読有り
-
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 13316 LNCS 292-307 2022年 査読有り最終著者責任著者
-
Communications in Computer and Information Science 1582 CCIS 519-526 2022年 査読有り
-
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 13316 LNCS 359-374 2022年 査読有り
-
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 13316 LNCS 403-421 2022年 査読有り
-
Lecture Notes in Networks and Systems 506 LNNS 608-619 2022年 査読有り
-
Communications in Computer and Information Science 1421 431-438 2021年 査読有り
-
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 12774 LNCS 312-322 2021年 査読有り
-
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 12774 LNCS 284-300 2021年 査読有り
-
International Journal of Advanced Computer Science and Applications 12(8) 9-16 2021年 査読有り
-
Prediction for private brand items purchase behavior of hair salons using bayesian survival analysisLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 12775 LNCS 98-109 2021年 査読有り
-
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 12775 LNCS 120-129 2021年 査読有り
-
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 12775 LNCS 130-146 2021年 査読有り
-
Lecture Notes in Computer Science 374-388 2020年7月 査読有り
-
Social Computing and Social Media. Design, Ethics, User Behavior, and Social Network Analysis 551-567 2020年7月 査読有り
-
Lecture Notes in Computer Science 325-335 2020年7月 査読有り
-
Lecture Notes in Computer Science 389-400 2020年7月 査読有り
-
Lecture Notes in Computer Science 336-354 2020年7月 査読有り
-
日本ソーシャルデータサイエンス学会 4(1) 25-32 2020年3月 査読有り
-
International Journal of Advanced Computer Science and Applications 11(5) 116-121 2020年
MISC
1講演・口頭発表等
117-
The 14th International Multi-Conference on Engineering and Technology Innovation 2025 2025年10月25日
-
The 14th International Multi-Conference on Engineering and Technology Innovation 2025 2025年10月25日
-
The 14th International Multi-Conference on Engineering and Technology Innovation 2025 2025年10月25日
-
The 13th International Multi-Conference on Engineering and Technology Innovation 2024 2024年10月
Works(作品等)
1共同研究・競争的資金等の研究課題
4-
日本学術振興会 科学研究費助成事業 2024年4月 - 2027年3月
-
日本学術振興会 科学研究費助成事業 若手研究 2021年4月 - 2024年3月
-
日本学術振興会 科学研究費助成事業 2017年4月 - 2020年3月