Curriculum Vitaes

Hiroki Kanazawa

  (金澤 宏樹)

Profile Information

Affiliation
Researcher, Faculty of Science and Technology Department of Materials and Life Sciences, Sophia University
Degree
Ph. D.(Mar, 2018, Sophia University)

Researcher number
70823384
ORCID ID
 https://orcid.org/0000-0002-4951-6732
J-GLOBAL ID
201801018270807253
researchmap Member ID
7000023350

X-ray analyses of functional nucleic acids, Structure-based drug design


Papers

 13
  • Kai Kosugi, Ayano Sugawara, Erika Iwase, HeeJu Park, Shoji Fujiwara, Hiroki Kanazawa, Akira Ono, Jiro Kondo
    ChemBioChem, Nov 8, 2025  
    <jats:p>Gold‐mediated base pairing in nucleic acids has remained poorly understood, despite structural analogies with mercury and silver ions known to coordinate selectively to mismatched base pairs. Here, the crystal structures of a CAu(I)C base pair and a CGAu(I)C base triple formed with natural nucleobases are reported. Although solution‐phase thermodynamic analysis of Au(I) coordination is technically unfeasible, structural evidence supports its selective insertion into the base mismatches. In contrast, duplexes incorporating 2‐thiocytosine form square‐planar complexes with Au(III), and melting temperature analysis shows significant thermal stabilization. The distinct coordination geometries of Au(I) and Au(III) arise from differences in oxidation state and preferred coordination numbers, with Au(I) favoring linear two‐coordinate structures and Au(III) forming square‐planar complexes stabilized by thiocarbonyl donors. These findings establish a structure‐guided strategy for oxidation‐state‐selective metal coordination in nucleic acids, paving the way for the design of metal‐responsive DNA architectures with tunable properties.</jats:p>
  • Giacomo Romolini, Hiroki Kanazawa, Christian Brinch Mollerup, Mikkel Baldtzer Liisberg, Simon Wentzel Lind, Zhiyu Huang, Cecilia Cerretani, Jiro Kondo, Tom Vosch
    Small Structures, Mar 17, 2025  
    <jats:p>Fluorescence imaging is a key tool in biological and medical sciences. Despite the potential for increased imaging depth in the near‐infrared range, the limited availability of bright emitters hinders its widespread implementation. In this work, a DNA‐stabilized silver nanocluster (DNA–AgNC) with bright emission at 960 nm in solution is presented, which redshifts further to 1055 nm in the solid and crystalline states. The atomic structure, composition and charge of this DNA–AgNC are determined by combining single‐crystal X‐ray diffraction and electrospray ionization–mass spectrometry. This unique atomically precise silver nanocluster consists of 28 silver atoms, of which are neutral (Ag<jats:sub>28</jats:sub> <jats:sup>16+</jats:sup>), arranged in a rodlike shape, and measures just over 2 nm in length. Interestingly, differences are observed in the number of chlorido ligands between the solution and crystalline states, highlighting the important but not yet fully understood role of chlorides in fine‐tuning the optical properties of this class of emitters. The structure of this silver nanorod, along with the fully characterized photophysical properties, represents a cornerstone for understanding the intricate interactions between silver and DNA bases, as well as paving the way for the rational design of the next‐generation imaging probes.</jats:p>
  • Roberto Bahena-Ceron, Jose Jaramillo-Ponce, Hiroki Kanazawa, Laura Antoine, Philippe Wolff, Virginie Marchand, Bruno P. Klaholz, Yuri Motorin, Pascale Romby, Stefano Marzi
    RNA Technologies, 2023  
  • Cecilia Cerretani, Hiroki Kanazawa, Tom Vosch, Jiro Kondo
    Angewandte Chemie International Edition, 58(48) 17153-17157, Nov 25, 2019  
  • Akira Ono, Hiroki Kanazawa, Hikari Ito, Misato Goto, Koudai Nakamura, Hisao Saneyoshi, Jiro Kondo
    Angewandte Chemie International Edition, 58(47) 16835-16838, Nov 18, 2019  

Presentations

 5

Teaching Experience

 2