理工学部 物質生命理工学科

Kanzawa Nobuyuki

  (神澤 信行)

Profile Information

Affiliation
Professor, Faculty of Science and Technology, Department of Materials and Life Sciences, Sophia University
Degree
博士(理学)(千葉大学)

Researcher number
40286761
J-GLOBAL ID
200901047892599780
researchmap Member ID
1000212244

(Subject of research)
Investigation of the Mechanism of Plant Nastic Movement.
Biochemical evaluation of a novel apatite fiber scaffold.


Papers

 105
  • Erika Onuma, Hayato Ito, Maki Sasaki, Nobuyuki Kanzawa, Keiji Kito, Mamoru Aizawa
    Materialia, 32 101926-101926, Dec, 2023  Peer-reviewed
  • Erika Onuma, Takayuki Honda, Hideyuki Yoshimura, Tappei Nishihara, Atsushi Ogura, Nobuyuki Kanzawa, Mamoru Aizawa
    Crystals, 13(9) 1318-1318, Aug 29, 2023  Peer-reviewed
    Protein adsorption is essential for determining material biocompatibility and promoting adherent cell growth. In this study, we focused on the a-plane structure of hydroxyapatite (HAp). This a-plane structure closely resembles the crystal plane where apatite is exposed in long bones. We conducted protein adsorption experiments using HAp ceramics with a preferred orientation to a-planes (aHAp), employing bovine serum albumin (BSA), lysozyme, and fetal bovine serum (FBS) as protein models to mimic the in vivo environment. Higher zeta potential and contact angle values were found in aHAp than in HAp ceramics fabricated from commercial HAp powder (iHAp). Bradford-quantified protein adsorption revealed BSA adsorption of 212 ng·mm−2 in aHAp and 28.4 ng mm−2 in iHAp. Furthermore, the Bradford-quantified protein adsorption values for FBS were 2.07 μg mm−2 in aHAp and 1.28 µg mm−2 in iHAp. Two-dimensional electrophoresis (2D-PAGE) showed a higher number of protein-derived major spots in aHAp (37 spots) than in iHAp (12 spots). Mass spectrometry analysis of the resulting 2D-PAGE gels revealed proteins adsorbed on aHAp, including secreted frizzled-related protein 3 and vitamin K epoxide reductase complex 1, which are involved in cellular bone differentiation. Overall, these proteins are expected to promote bone differentiation, representing a characteristic property of aHAp.
  • Ayame Mikagi, Yotaro Takahashi, Nobuyuki Kanzawa, Yota Suzuki, Yuji Tsuchido, Takeshi Hashimoto, Takashi Hayashita
    Molecules, 28(4) 1704, Feb, 2023  Peer-reviewed
  • Ayame Mikagi, Koichi Manita, Yuji Tsuchido, Nobuyuki Kanzawa, Takeshi Hashimoto, Takashi Hayashita
    ACS Applied Bio Materials, Nov 1, 2022  Peer-reviewed
  • Akari Harada, Nanami Tsuji, Nozomi Fujimoto, Mia Matsuo, Miha Saito, Nobuyuki Kanzawa
    Plant biotechnology (Tokyo, Japan), 39(2) 155-163, Jun 25, 2022  Peer-reviewedCorresponding author
    Flowering locus T (FT) is known to promote flowering in response to photoperiodic conditions and has recently been shown to contribute to other phenomenon, such as diurnal stomatal movement. In legumes, FTs are classified into three subtypes, though the role of each subtype is not well defined. It has been reported that when FT of Lotus japonicus (LjFT) is heterologously expressed in Arabidopsis, LjFT functions as a mobile florigen to promote flowering, similar to Arabidopsis FT (AtFT). In this study, we expressed AtFT in L. japonicus using the SUC2 promoter and showed that heterologous expression of AtFT was able to promote flowering in the plant. We also showed that AtFT expression does not affect stomatal closing nor nyctinastic leaf movement. These findings contribute to our understanding of flower development and have potential application to breeding or plant biotechnology.

Misc.

 21

Books and Other Publications

 5

Presentations

 55

Professional Memberships

 7

Research Projects

 16

Industrial Property Rights

 1

Social Activities

 6