地球環境学研究科

安納 住子

アンノウ スミコ  (Anno Sumiko)

基本情報

所属
上智大学 地球環境学研究科地球環境学専攻 教授
(兼任)応用データサイエンス学位プログラム 教授
学位
修士(公衆衛生学)(ニューヨーク医科大学)
博士(医学)(神戸大学)

研究者番号
10333527
J-GLOBAL ID
201001083389571077
researchmap会員ID
6000022599

機械・深層学習/ビッグデータを用いた応用研究


論文

 33
  • Shujie Sun, Zehui Guo, Lei Li, Zhihao Zheng, Jian Wang, Sumiko Anno, Xuepeng Qian
    Journal of Cleaner Production 495 145038-145038 2025年3月  査読有り
  • Sumiko Anno, Yoshitsugu Kimura, Satoru Sugita
    Scientific Reports 15(1) 2025年1月4日  査読有り
  • Sumiko Anno, Hirakawa Tsubasa, Satoru Sugita, Shinya Yasumoto, Ming-An Lee, Yoshinobu Sasaki, Kei Oyoshi
    Geo-spatial Information Science DOI: 10.1080/10095020.2022.2144770 2023年1月17日  査読有り
  • Awah Rita Engwari, Sumiko Anno, Ako Andrew
    The 37th Congress of Japan Association for International Health 92 2022年10月  査読有り
  • Sumiko Anno, Tsubasa Hirakawa, Satoru Sugita, Shinya Yasumoto
    Frontiers in Public Health 10:911336. doi: 10.3389/fpubh.2022. 2022年8月3日  査読有り
    Introduction: Coronavirus disease (COVID-19) rapidly spread from Wuhan, China to other parts of China and other regions/countries around the world, resulting in a pandemic due to large populations moving through the massive transport hubs connecting all regions of China via railways and a major international airport. COVID-19 will remain a threat until safe and effective vaccines and antiviral drugs have been developed, distributed, and administered on a global scale. Thus, there is urgent need to establish effective implementation of preemptive non-pharmaceutical interventions for appropriate prevention and control strategies, and predicting future COVID-19 cases is required to monitor and control the issue. Methods This study attempts to utilize a three-layer graph convolutional network (GCN) model to predict future COVID-19 cases in 190 regions and countries using COVID-19 case data, commercial flight route data, and digital maps of public transportation in terms of transnational human mobility. We compared the performance of the proposed GCN model to a multilayer perceptron (MLP) model on a dataset of COVID-19 cases (excluding the graph representation). The prediction performance of the models was evaluated using the mean squared error. Results Our results demonstrate that the proposed GCN model can achieve better graph utilization and performance compared to the baseline in terms of both prediction accuracy and stability. Discussion The proposed GCN model is a useful means to predict COVID-19 cases at regional and national levels. Such predictions can be used to facilitate public health solutions in public health responses to the COVID-19 pandemic using deep learning and data pooling. In addition, the proposed GCN model may help public health policymakers in decision making in terms of epidemic prevention and control strategies.

MISC

 4

書籍等出版物

 8

講演・口頭発表等

 16

共同研究・競争的資金等の研究課題

 9

その他

 2