Curriculum Vitaes

Gomi Yasushi

  (五味 靖)

Profile Information

Affiliation
Associate Professor, Faculty of Science and Technology, Department of Information and Communication Sciences, Sophia University
Degree
修士(理学)(上智大学)

Contact information
y-gomisophia.ac.jp
Researcher number
50276515
J-GLOBAL ID
200901015517108370
researchmap Member ID
5000064369

1995-2008 Dept. Mathematics Sophia University, Research on the representation theory of reflection groups and Iwahori-Hecke algebras
(19998 Sept.-1999 Aug. Université de Picardie Jules Verne[France], Research on braid groups)
2008-present Dept. Information and communication Sciences Sophia University, Research on the representation theory of reflection groups and Iwahori-Hecke algebras

(Subject of research)
Representation theory of Iwahori-Hecke algebras and reflection groups


Research Areas

 1

Papers

 14
  • Y. Gomi, M. L. Loyola, M. L. De Las Penas
    Contrib. Discrete Math., 13(1) 1-22, Jan, 2018  Peer-reviewed
  • Yasushi Gomi
    TOKYO JOURNAL OF MATHEMATICS, 39(3) 583-596, Mar, 2017  Peer-reviewed
    In this paper, we determine (tau q) over tilde (X-q(lambda)), the Gauss sums on the Iwahori-Hecke algebras of type A for irreducible characters X-q(lambda), which are q-analogues of those on the symmetric groups. We also explicitly determine the values of the corresponding trace function Psi((n))(q) = Sigma(lambda 1-n) (tau(q)) over tilde (X-q(lambda))X-q(lambda).
  • Yasushi Gomi, Taiki Maeda, Ken-ichi Shinoda
    TOKYO JOURNAL OF MATHEMATICS, 35(1) 165-179, Jun, 2012  
    We shall discuss Gauss sums on finite groups and give several examples including the case of the complex reflection groups G(m, r, n), and hence finite symmetric groups, and also finite Weyl groups.
  • Yasushi Gomi
    JOURNAL OF ALGEBRA, 303(2) 566-591, Sep, 2006  Peer-reviewed
  • Yasushi Gomi
    RIMS Kokyuroku, 1497 71-78, 2006  Invited
  • Yasushi Gomi
    103-118, 2006  Invited
  • Y Gomi, Nakamura, I, K Shinoda
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 56(3) 495-528, Jun, 2004  Peer-reviewed
    For most of the finite subgroups of SL(3, C) we give explicit formulae for the Molien series of the coinvariant algebras, generalizing McKay's formulae [McKay99] for subgroups of SU(2). We also study the G-orbit Hilbert scheme Hilb (G)(C-3) for any finite subgroup G of SO(3), which is known to be a minimal (crepant) resolution of the orbit space C-3/G. In this case the fiber over the origin of the Hilbert-Chow morphism from Hilb(G)(C-3) to C-3/G consists of finitely many smooth rational curves, whose planar dual graph is identified with a certain subgraph of the representation graph of G. This is an SO(3) version of the McKay correspondence in the SU(2) case.
  • F Digne, Y Gomi
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 10(4) 609-623, Jun, 2001  Peer-reviewed
    In this article we study by combinatorial methods presentations of the pure braid group associated with any Coxeter group. We generalize to all types the decomposition of the pure braid group into successive semi-direct products known in the case of type A(n).
  • GOMI YASUSHI, I Nakamura, K Shinoda
    ASIAN JOURNAL OF MATHEMATICS, 4(1) 51-70, Mar, 2000  Peer-reviewed
  • Y Gomi
    JOURNAL OF ALGEBRA, 203(1) 270-284, May, 1998  Peer-reviewed
    The semisimplicity of Iwahori-Hecke algebras has been studied by several authors. A. Gyoja (J. Algebra 174, 1995, 553-572) gave a necessary and sufficient condition for Iwahori-Hecke algebras to be semisimple, using the modular representation theory. The author (J. Algebra 183, 1996, 514-544) studied the semisimplicity of parabolic Hecke algebras when they have only one parameter q. In this paper we completely determine the cases when parabolic Hecke algebras are semisimple complementing our previous work applying the method of Gyoja. (C) 1998 Academic Press.
  • Y Gomi
    JOURNAL OF ALGEBRA, 183(2) 514-544, Jul, 1996  Peer-reviewed
  • Y GOMI
    COMMUNICATIONS IN ALGEBRA, 22(11) 4361-4372, 1994  Peer-reviewed
    The purpose of this paper is to calculate all the character tables of Hecke algebras associated with finite Chevalley groups of exceptional type and their maximal parabolic subgroups when they are commutative. In the case when the groups are of classical type, the character values of Hecke algebras are expressed by using the q-Krawtchouk polynomials and the q-Hahn polynomials (See [10] and [15]). On the other hand, the character tables of commutative Hecke algebras associated with exceptional Weyl groups and their maximal parabolic subgroups are given in [12]. In sectional sign 1, we discuss the structure of Hecke algebras and in sectional sign 2, we calculate all the character tables of these commutative Hecke algebras associated with finite Chevalley groups of exceptional type. Although some of them are well known, we include them for completeness.
  • Y GOMI
    COMMUNICATIONS IN ALGEBRA, 22(1) 123-138, 1994  Peer-reviewed
    The purpose of this paper is to calculate all the character tables of Hecke algebras associated with exceptional Weyl groups and their maximal parabolic subgroups when they are commutative. In the case when Weyl groups are of classical type, they are already known in [D.1] and [D.2]. In 1, we discuss the structure of Hecke algebras and in 2, we calculate all the character tables of these commutative Hecke algebras associated with exceptional Weyl groups.

Presentations

 10

Professional Memberships

 1

Research Projects

 17

Other

 2
  • Apr, 2007
    特定の教科書を決めることはせず、時間数や他の講義との連携、学生の興味などを総合的に考えて、内容を構成して授業を進めている。理論中心の講義ではあるが、適当な具体例を出来るだけ多く取り上げて学生が理解しやすいように工夫している。
  • Apr, 2003
    学生の能力に応じた本を選び、学生はそれを講読し口頭発表する。本の内容をただそのまま発表するのではなく、適当な具体例について考えたり、他の文献との比較を行うなどして、発表の幅を広げるように指導している。また発表の仕方についても、議論の展開の仕方や、黒板の使い方などを工夫するように指導している。