理工学部

鈴木 伸洋

スズキ ノブヒロ  (Suzuki Nobuhiro)

基本情報

所属
上智大学 理工学部物質生命理工学科 准教授
学位
学士(香川大学)
修士(香川大学)
Ph.D(University of Nevada Reno)
博士(生物化学及び分子生物学)(ネバダ大学リノ校)

研究者番号
50735925
J-GLOBAL ID
201401089213197583
researchmap会員ID
7000007565

2004年-2009年 University of Nevada, Reno
植物の熱ストレス応答を制御する分子生物学的機構

2009年-2014年 
University of North Texas環境ストレスへの全身獲得抵抗性を制御する活性酸素シグナル

2014年-現在 上智大学理工学部物質生命理工学科
異なる環境ストレス応答を制御するシグナルネットワーク 

(研究テーマ)
植物の異なる熱ストレス応答を制御する分子生物学的機構
複合ストレスへの植物の応答


論文

 37
  • Tomoki Oshita, Joongeun Sim, Taufika Islam Anee, Hanako Kiyono, Chihiro Nozu, Nobuhiro Suzuki
    Journal of plant physiology 281 153915-153915 2023年1月17日  査読有り責任著者
    Due to recent global warming, heat stress can simultaneously occur with cadmium (Cd) stress in regions suffering from metal pollution. In this study, we investigated the effects of heat, Cd and their combination on the growth and physiological characteristics of Arabidopsis thaliana. Arabidopsis plants were more susceptible to a combination of heat and Cd stress than to each stress applied individually, although the accumulation of Cd in shoots was comparable between plants subjected to Cd stress and the combined stress. Plants subjected to this stress combination showed a dramatic reduction in the accumulation of the photosynthetic reaction center proteins in photosystem II as well as a tendency toward enhanced lipid peroxidation, suggesting that the negative effects of a combination of heat and Cd stresses might be caused by oxidative damage accompanied by damage to the photosynthetic apparatus. Interestingly, aos and lox3 mutants deficient in jasmonic acid (JA) synthesis showed attenuation of the negative effects caused by a combination of heat and Cd stresses on the growth and maximum quantum efficiency of photosystem II. The roles of JA might be altered when heat stress is combined with Cd stress, despite its significance in the tolerance of plants to Cd stress when individually applied, which has been shown in previous studies.
  • Nobuhiro Suzuki
    International journal of molecular sciences 24(2) 2023年1月10日  査読有り招待有り筆頭著者責任著者
    Heat stress severely affects plant growth and crop production. It is therefore urgent to uncover the mechanisms underlying heat stress responses of plants and establish the strategies to enhance heat tolerance of crops. The chloroplasts and mitochondria are known to be highly sensitive to heat stress. Heat stress negatively impacts on the electron transport chains, leading to increased production of reactive oxygen species (ROS) that can cause damages on the chloroplasts and mitochondria. Disruptions of photosynthetic and respiratory metabolisms under heat stress also trigger increase in ROS and alterations in redox status in the chloroplasts and mitochondria. However, ROS and altered redox status in these organelles also activate important mechanisms that maintain functions of these organelles under heat stress, which include HSP-dependent pathways, ROS scavenging systems and retrograde signaling. To discuss heat responses associated with energy regulating organelles, we should not neglect the energy regulatory hub involving TARGET OF RAPAMYCIN (TOR) and SNF-RELATED PROTEIN KINASE 1 (SnRK1). Although roles of TOR and SnRK1 in the regulation of heat responses are still unknown, contributions of these proteins to the regulation of the functions of energy producing organelles implicate the possible involvement of this energy regulatory hub in heat acclimation of plants.
  • Nobuhiro Suzuki, Shunsuke Shigaki, Mai Yunose, Nicholas Raditya Putrawisesa, Sho Hogaki, Maria Carmela Di Piazza
    Biomimetics (Basel, Switzerland) 7(2) 2022年6月19日  査読有り筆頭著者責任著者
    In this paper, the main features of systems that are required to flexibly modulate energy states of plant cells in response to environmental fluctuations are surveyed and summarized. Plant cells possess multiple sources (chloroplasts and mitochondria) to produce energy that is consumed to drive many processes, as well as mechanisms that adequately provide energy to the processes with high priority depending on the conditions. Such energy-providing systems are tightly linked to sensors that monitor the status of the environment and inside the cell. In addition, plants possess the ability to efficiently store and transport energy both at the cell level and at a higher level. Furthermore, these systems can finely tune the various mechanisms of energy homeostasis in plant cells in response to the changes in environment, also assuring the plant survival under adverse environmental conditions. Electrical power systems are prone to the effects of environmental changes as well; furthermore, they are required to be increasingly resilient to the threats of extreme natural events caused, for example, by climate changes, outages, and/or external deliberate attacks. Starting from this consideration, similarities between energy-related processes in plant cells and electrical power grids are identified, and the potential of mechanisms regulating energy homeostasis in plant cells to inspire the definition of new models of flexible and resilient electrical power grids, particularly microgrids, is delineated. The main contribution of this review is surveying energy regulatory mechanisms in detail as a reference and helping readers to find useful information for their work in this research field.
  • Kazuma Katano, Nobuhiro Suzuki
    Plant signaling & behavior 1-7 2021年9月22日  査読有り
    Pollination is one of the critical processes that determines crop yield and quality. Thus, it is an urgent need to elucidate the mechanisms underlying pollination. Our previous research has revealed a novel phenomenon that pollen attachment to stigma caused stigma shrinkage, whereas failure of pollen attachment to stigma due to the environmental stress induced elongation of stigmatic papillae. However, little is known about the mechanisms of these morphological alterations in stigmatic papillae. Since the RLK-ROPGEF-ROP network is a common mechanism for the elongation of pollen tubes and root hairs, this network may be also involved in the elongation of papillae in the stigma. In this review, we will discuss the known mechanisms regulating pollen tube growth and root hair elongation and attempt to propose an elongation mechanism of stigmatic papillae. In addition, we will suggest that the degradation of F-actin by a significant increase in Ca2+ induced by the components of pollen coat might be a putative molecular mechanism of stigmatic papillae shrinkage during pollen adhesion.
  • Hanako Kiyono, Kazuma Katano, Nobuhiro Suzuki
    Plants (Basel, Switzerland) 10(8) 2021年8月11日  査読有り責任著者
    To thrive on the earth, highly sophisticated systems to finely control reproductive development have been evolved in plants. In addition, deciphering the mechanisms underlying the reproductive development has been considered as a main research avenue because it leads to the improvement of the crop yields to fulfill the huge demand of foods for the growing world population. Numerous studies revealed the significance of ROS regulatory systems and carbohydrate transports and metabolisms in the regulation of various processes of reproductive development. However, it is poorly understood how these mechanisms function together in reproductive tissues. In this review, we discuss mode of coordination and integration between ROS regulatory systems and carbohydrate transports and metabolisms underlying reproductive development based on the hitherto findings. We then propose three mechanisms as key players that integrate ROS and carbohydrate regulatory systems. These include ROS-dependent programmed cell death (PCD), mitochondrial and respiratory metabolisms as sources of ROS and energy, and functions of arabinogalactan proteins (AGPs). It is likely that these key mechanisms govern the various signals involved in the sequential events required for proper seed production.

MISC

 14
  • Wetland Research 10 37-46 2020年  査読有り筆頭著者責任著者
  • Nobuhiro Suzuki, Kazuma Katano
    Frontiers in Plant Science 9 490 2018年4月16日  
    Regulatory systems of reactive oxygen species (ROS) are known to be integrated with other pathways involving Ca2+ signaling, protein kinases, hormones and programmed cell death (PCD) pathways to regulate defense mechanisms in plants. Coordination between ROS regulatory systems and other pathways needs to be flexibly modulated to finely tune the mechanisms underlying responses of different types of tissues to heat stress, biotic stresses and their combinations during different growth stages. Especially, modulation of the delicate balance between ROS-scavenging and producing systems in reproductive tissues could be essential, because ROS-dependent PCD is required for the proper fertilization, despite the necessity of ROS scavenging to prevent the damage on cells under heat stress and biotic stresses. In this review, we will update the recent findings associated with coordination between multiple pathways under heat stress, pathogen attack and their combinations. In addition, possible integrations between different signals function in different tissues via ROS-dependent long-distance signals will be proposed.
  • Simon Gilroy, Maciej Bialasek, Nobuhiro Suzuki, Magdalena Gorecka, Amith R. Devireddy, Stanislaw Karpinski, Ron Mittler
    PLANT PHYSIOLOGY 171(3) 1606-1615 2016年7月  査読有り
  • Nobuhiro Suzuki
    PLANT SIGNALING & BEHAVIOR 11(11) e1247139 2016年  査読有り招待有り
    As sessile organisms, plants are continuously exposed to various environmental stresses. In contrast to the controlled conditions employed in many researches, more than one or more abiotic and/or biotic stresses simultaneously occur and highly impact growth of plants and crops in the field environments. Therefore, an urgent need to generate crops with enhanced tolerance to stress combinations exists. Researchers, however, focused on the mechanisms underlying acclimation of plants to combined stresses only in recent studies. Plant hormones might be a key regulator of the tailored responses of plants to different stress combinations. Co-ordination between different hormone signaling, or hormone signaling and other pathways such as ROS regulatory mechanisms could be flexible, being altered by timing and types of stresses, and could be different depending on plant species under the stress combinations. In this review, update on recent studies focusing on complex-mode of hormone signaling under stress combinations will be provided.

書籍等出版物

 3

共同研究・競争的資金等の研究課題

 5