Curriculum Vitaes

Fujita Masahiro

  (藤田 正博)

Profile Information

Affiliation
Professor, Faculty of Science and Technology, Department of Materials and Life Sciences, Sophia University
Degree
博士(工学)(Mar, 2002, 東京農工大学)

Contact information
masahi-fsophia.ac.jp
Other name(s) (e.g. nickname)
Yoshizawa
Researcher number
50433793
J-GLOBAL ID
200901014332520864
researchmap Member ID
6000003382

(Subject of research)
Developement of fast proton conductive plastic crystals


Papers

 185
  • Futa Koyama, Justin Lamb, Moena Hirao, Noriyuki Suzuki, Masahiro Yoshizawa-Fujita, Toyonobu Usuki, Yumiko Suzuki
    Advanced Synthesis & Catalysis, Oct 4, 2024  
    With a number of biologically active members, 2‐aroylchromones are valuable synthetic targets. A direct route towards 2‐aroylchromones from 2‐(methylsulfonyl)chromones and aldehydes via NHC‐catalyzed C‐C bond formation was developed. Yields of the synthesized 2‐aroylchromones were up to 85%. Chromones with angioprotective or antibacterial properties were easily synthesized using the method developed. Additionally, the synthetic utility of the afforded chromones was demonstrated by using them to synthesize the anticancer compound wrightiadione and analogues of it.
  • Keiko Nishikawa, Kozo Fujii, Kazuhiko Matsumoto, Hiroshi Abe, Masahiro Yoshizawa-Fujita
    Bulletin of the Chemical Society of Japan, Aug 19, 2024  Peer-reviewedLast author
    Abstract The temperature dependences of the spin–spin relaxation times (T2) of 1H and 19F nuclei were measured for N, N-diethylpyrrolidinium bis(fluorosulfonyl)amide with a plastic crystal (PC) phase. In the PC phase, two types of T2 were observed in both 1H and 19F experiments, which was considered to be the appearance of heterogeneous dynamics of diffusive motion. By examining temperature dependences of the T2 values and the existence ratios, the following conclusions were reached. (1) The prepared PC sample was in a polycrystalline state, and each crystallite comprised two phases: the core phase (PC phase) and the surface phase formed to relieve surface stress. (2) The 1H-T2 (19F-T2) values of the two phases differed, and ions in the surface phase were more mobile. The 1H-T2 (19F-T2) values for the two phases increased with temperature rise. In particular, the 1H-T2 (19F-T2) values of the surface phase were smoothly connected to the liquid T2 values. (3) The cations and anions exhibited a cooperative diffusive motion. (4) When the temperature was considerably lower than the melting point, the ratio of the surface phase did not significantly differ from when it first formed. However, it rapidly increased near the melting point and became liquid.
  • Takuto Ootahara, Kan Hatakeyama-Sato, Morgan L. Thomas, Yuko Takeoka, Masahiro Rikukawa, Masahiro Yoshizawa-Fujita
    ACS Applied Electronic Materials, 6(8) 5866-5878, Jul 29, 2024  Peer-reviewedLast authorCorresponding author
  • N.M. Mustafa, F.N. Jumaah, M. Yoshizawa-Fujita, N.A. Ludin, M. Akhtaruzzaman, N.H. Hassan, A. Ahmad, K.M. Chan, M.S. Su’ait
    Construction and Building Materials, 428 136283-136283, May 17, 2024  Peer-reviewed
  • Kotoko Ariga, Shuho Akakabe, Ryotaro Sekiguchi, Morgan L. Thomas, Yuko Takeoka, Masahiro Rikukawa, Masahiro Yoshizawa-Fujita
    ACS Omega, 9(20) 22203-22212, May 9, 2024  Last authorCorresponding author

Misc.

 63

Presentations

 372

Research Projects

 32

Industrial Property Rights

 21

Social Activities

 10

Other

 11