ONO Taito, NAKADATE Hiromichi, ZHANG Yuelin
The Proceedings of Mechanical Engineering Congress, Japan, 2023 J023p-03, 2023
In baseball, frequent ball head collisions are high-speed collisions with low-mass objects, a characteristic concussion injury situation compared to other sports, suggesting that the mechanism and threshold for concussion onset may be different. In this study, we investigated the mechanical response of the brain during ball impact using finite element analysis. The peak values of all mechanical parameters of the brain increased in dependence on the translational velocity of the ball. As the rotational velocity of the ball was increased, the rotational acceleration and the maximum principal strain increased, but the translational acceleration did not change. The increase in peak values when the translational velocity of the ball was changed was greater than the increase in peak values when the rotational velocity of the ball was changed for all the brain mechanical parameters. This is thought to be due to the increase in impact force, suggesting that translational velocity of the ball has a greater effect on the brain dynamic response than rotational velocity of the ball.