Curriculum Vitaes
Profile Information
- Affiliation
- Associate Professor, Faculty of Science and Technology, Department of Information and Communication Sciences, Sophia University
- Degree
- 修士(工学)(東京大学)博士(情報理工学)(東京大学)
- Researcher number
- 20323850
- J-GLOBAL ID
- 200901028424108863
- researchmap Member ID
- 5000008983
- External link
私は主に組合せ最適化問題を研究しています.産業で生じる問題を組合せ最適化問題としてモデル化する方法,モデル化した問題を効率的に解くためのアルゴリズムの開発,さらには計算機科学におけるアルゴリズムの基礎などを研究しています.
Research Areas
1Research History
5-
Apr, 2006 - Sep, 2006
-
Apr, 2004 - Sep, 2004
-
Oct, 2003 - Mar, 2004
-
Apr, 2000 - Mar, 2002
-
Apr, 1998 - Mar, 2000
Education
1-
Apr, 1996 - Mar, 1998
Awards
3-
Aug, 2007
-
Feb, 2005
-
Oct, 1998
Papers
50-
Journal of Advanced Mechanical Design, Systems, and Manufacturing, 12(3) JAMDSM0065-JAMDSM0065, Jul 20, 2018 Peer-reviewed
-
Journal of the Operations Research Society of Japan, 61(1) 151-162, Jan 1, 2018 Peer-reviewed
-
GEOGRAPHICAL ANALYSIS, 48(4) 448-464, Oct, 2016 Peer-reviewed
-
20th ITS World Congress Tokyo 2013, 2013
-
20th ITS World Congress Tokyo 2013, 2013
-
Bulletin of the Japan Society for Industrial and Applied Mathematics, 23(1) 25-30, 2013
-
Bulletin of the Japan Society for Industrial and Applied Mathematics, 23(3) 129-134, 2013
-
Bulletin of the Japan Society for Industrial and Applied Mathematics, 23(2) 73-78, 2013
-
ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: NEW CHALLENGES, NEW APPROACHES, 338 41-48, 2010 Peer-reviewed
-
ALGORITHMS AND COMPUTATION, PT I, 6506 121-+, 2010
-
DISCRETE MATHEMATICS, 309(9) 2733-2744, May, 2009
-
Proceedings of the International Network Optimization Conference 2009, MB5-2, Apr, 2009
-
IPSJ SIG Notes, 2008(84) 57-62, Sep, 2008
-
IPSJ SIG Notes, 2008(84) 49-56, Sep, 2008In this paper, we propose the levelwise mesh sparsification method for the shortest path query problem. Several sparse networks are obtained by sparsifying the original network, and the shortest path problem is solved by finding the shortest path in these networks. The obtained networks are sparse and small, thus the computational time is short. Computational experiments on real world data show the efficiency of our method in terms of computational time and memory efficiency. Compared with existing approaches, the advantage of our method is that it can deal with negative costs and time-dependent costs, and uses only a small amount of memory.
-
日本オペレーションズ・リサーチ学会秋季研究発表会アブストラクト集, 2008(09) 314-315, Sep, 2008
-
NII Technical Reports, (4) 1-9, Mar 31, 2008
-
Innovations in Networks - Proceedings of the APMS 2008 Conference, An Event of the IFIP Working Group 5.7, 223-233, 2008
-
ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, PROCEEDINGS, 4041 334-342, 2006
-
RIMS Kokyuroku, 1426 159-165, Apr, 2005
-
PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 895-896, 2005
-
ALGORITHMIC APPLICATIONS IN MANAGEMENT, PROCEEDINGS, 3521 233-242, 2005
-
IPSJ SIG Notes, 2004(101) 49-54, Oct, 2004Given a pair of non-negative integers m and n, P(m, n) denotes a subset of 2-dimensional triangular lattice points defined by P(m, n)={(ze_1+ye_2)|x∈{0,1,…,m-1},y∈{0,1,…,n-1 } } where e_1=^^<def>(1,0),e_2=^^<def>(1/2,√<3>/2). Let T_<m, n>(d) be an undirected graph defined on vertex set P(m, n) satisfying that two vertices are adjacent if and only if the Euclidean distance between the pair is less than or equal to d. In this paper, we discuss a necessary and sufficient condition that T_<m, n>(d) is perfect. More precisely, we show that ∀m∈Z_+, T_<m, n>(d) is perfect ] if and only if d≧√<n^2-3n+3>. Given a non-negative vertex weight vector ω∈Z^<P(m, n)>_+, a multicoloring of (T_<m, n>(d),ω) is an assignment of colors to P(m, n) such that each vertex υ∈P(m, n) admits ω(υ) colors and every adjacent pair of two vertices does not share a common color. We also give an efficient algorithm for muliticoloring (T_m, n(d), ω) when P(m, n) is perfect. In general case, our results on the perfectness of P(m, n) implies a polynomial time approximation algorithm for multicoloring (T_m, n(d), ω). Our algorithm finds a multicoloring which uses at most α(d)ω+O(d^3) colors, where ω denotes the weighted clique number. When d=1, √<3>, 2,√<7>, 3, the approximation ratio α(d)=(4/3), (5/3), (5/3), (7/4), (7/4), respectively. When d>1, we showed that α(d)≦(1+2/√<3>+(√^2<3>-3)/d). We also showed the NP-completeness of the problem to determine the existence of a multicoloring of (T_m, n(d), ω) with strictly less than (4/3)ω colors.
-
JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 47(2) 112-122, Jun, 2004
-
JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 47(2) 123-128, Jun, 2004
-
2004(34) 35-40, Mar, 2004
-
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 20(1) 87-100, Feb, 2003
-
JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 44(4) 378-389, Dec, 2001
-
IEEJ transactions on electronics, information and systems, 121(6) 976-981, Jun, 2001
-
Journal of the Tokyo University of Mercantile Marine. Natural sciences, 51 27-33, Dec, 2000
-
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, E83A(4) 627-638, Apr, 2000
Misc.
11-
オペレーションズ・リサーチ, 60(12) 706-713, Dec 1, 2015 Peer-reviewedInvitedこの記事は,オペレーションズ・リサーチの中でも特に組合せ最適化,あるいは離散アルゴリズムでよく用いられるグラフ理論の記法の手ほどきを目的としている.グラフ理論の記法では,集合や関数の使い方が重要である.よって,まず集合や関数についても少しだけ紹介した後に,グラフ理論の初歩を紹介する.そして,グラフ理論の記法の使い方の例として美術館定理を扱う.高校数学程度の論理的議論はできるがグラフ理論の数理的記述には慣れていないという読者を想定している.
-
Proceedings of the 24th Canadian Conference on Computational Geometry, CCCG 2012, 241-246, Dec 1, 2012
-
日本オペレーションズ・リサーチ学会秋季研究発表会アブストラクト集, 2011 198-199, Sep 13, 2011
Books and Other Publications
1-
Asakura Publishing Co., Ltd., Jan, 2002 (ISBN: 4254270054)
Presentations
22-
30th ITS World Congress (ITS World Congress 2024), Sep 18, 2024
-
2023 INFORMS Annual Meeting, Oct 16, 2023
Professional Memberships
2Research Projects
8-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, Apr, 2012 - Mar, 2014
-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, 2011 - 2013
-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, 2008 - 2011
-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, 2007 - 2008
-
科学研究費助成事業, 日本学術振興会, 2006 - 2007