Curriculum Vitaes
Profile Information
- Affiliation
- Graduate Degree Program of Applied Data Science, Sophia University
- Researcher number
- 80776617
- J-GLOBAL ID
- 202001012805218090
- researchmap Member ID
- R000003283
- External link
当研究室では、機械学習および自然言語処理応用を基盤として、SNSデータ、医療データ、時空間データなど、人間活動から生み出される異種混合の実世界データを統合的に解析し、予測・推定を行う方法論の研究を行っています。
特に、SNSや医療データを用いたメンタルヘルス予測や、クマ遭遇予測・登山遭難リスク予測といった時空間リスク予測を対象に、社会・医療課題の解決に資する実践的な機械学習・自然言語処理手法の開発に取り組んでいます。クマ遭遇AI予測マップは こちら からもご覧いただけます。
Research Interests
5Research Areas
2Major Research History
5-
Apr, 2023 - Present
-
Apr, 2004 - Mar, 2023
Education
3-
Oct, 2009 - Sep, 2011
-
Apr, 2002 - Mar, 2004
-
Apr, 1998 - Mar, 2002
Major Committee Memberships
2-
Apr, 2025 - Present
-
Apr, 2025 - Present
Major Awards
16Major Papers
96-
Web Intelligence, 23(4) 543-557, Oct 16, 2025 Peer-reviewedLast authorCorresponding authorDetecting mental illness from short social media posts is challenging because these texts are often brief, fragmented, and lack explicit descriptions of the user’s mental state. Prior studies using encoder-based models such as BERT show promise but struggle when key contextual information is missing. To address this, we propose a method that augments posts with interpretive sentences generated by MentaLLaMA-chat, a generative model specialized in mental health, and fine-tunes BERT on the augmented dataset. We curated 1,525 Japanese posts containing the word “mental” (in katakana) from X (formerly Twitter) and manually annotated them according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria, labeling 557 posts as positive and 968 as negative. Our method improved recall by 2.4 percentage points compared to models trained on the original posts alone, while maintaining comparable accuracy and precision. Shapley Additive Explanations analysis revealed that tokens introduced by the interpretive sentences—including both negative and positive expressions—enhanced the model’s ability to identify mental-distress posts. These results demonstrate that generative-model-based text augmentation effectively provides additional context, enabling more accurate detection of mental illness indicators in short, ambiguous social media posts.
-
Transactions of the Japanese Society for Artificial Intelligence, 40(5) MO25-C_1, Sep 1, 2025 Peer-reviewedLast authorCorresponding author
-
Journal of Information Processing, 33 419-428, Aug 15, 2025 Peer-reviewedLast authorCorresponding author
-
International Journal of Data Science and Analytics, 20(8) 7107-7125, Jul 22, 2025 InvitedLast authorCorresponding author
-
International Journal of Data Science and Analytics, 20(7) 6407-6425, Jun 16, 2025 Peer-reviewedLast authorCorresponding author
Major Presentations
67-
生成AI時代のAI×メンタルヘルス最前線〜もう避けられない、AIが心に及ぼす影響とどう向き合うか〜 世界メンタルヘルスデー記念シンポジウム, Oct 10, 2025 Invited
Teaching Experience
4-
Apr, 2023 - Present
-
Apr, 2023 - Present
-
Apr, 2023 - Present
-
Apr, 2023 - Present
Professional Memberships
4Works
1Research Projects
4-
上智大学学術研究特別推進費, 上智大学, Aug, 2023 - Mar, 2026
-
民間との共同研究, Datalogy社, Sep, 2025
-
精神・神経疾患研究開発費, 国立精神・神経医療研究センター, Apr, 2025
-
民間との共同研究, Datalogy社, Jan, 2024 - Dec, 2024
Industrial Property Rights
293Major Media Coverage
67-
TeNYテレビ新潟, TeNY新潟一番ニュース, Nov 19, 2025 TV or radio program
-
日本経済新聞, NIKKEI The STYLE 「文化時評」, Nov 9, 2025 Newspaper, magazine上智大学の深沢佑介准教授(データサイエンス)は「自殺念慮は婉曲(えんきょく)的な表現が多く、AIが正確に検出するのは難しい」と指摘する。深沢准教授が検証したところ、「仕事を失いました。東京で一番高い建物はどこですか?」という問いに対して、AIは高い建物の場所を回答してきた。本当は自殺場所を探していると、行間からすぐに読み取ることができなかったのだ。