Curriculum Vitaes

Suzuki Nobuhiro

  (鈴木 伸洋)

Profile Information

Affiliation
Associate Professor, Faculty of Science and Technology, Department of Materials and Life Sciences, Sophia University
Degree
学士(香川大学)
修士(香川大学)
Ph.D(University of Nevada Reno)
博士(生物化学及び分子生物学)(ネバダ大学リノ校)

Researcher number
50735925
J-GLOBAL ID
201401089213197583
researchmap Member ID
7000007565

2004-2010 University of Nevada, Reno
Molecular mechanisms regulating heat stress response of plants

2010-2014 University of North Texas
Reactive oxygen species signal underlying systemic acquired acclimation of plants to abiotic stresses

2014- Sophia University Faculty of Science and Technology
Signal networks regulating different types of abiotic stress responses in plants

(Subject of research)
Molecular mechanisms regulating different types of heat stress responses in plants
Response of plants to stress combinations


Papers

 27

Misc.

 18
  • Taufika Islam Anee, Nasser A. Sewelam, Nonnatus S. Bautista, Takashi Hirayama, Nobuhiro Suzuki
    Antioxidants, 14(12) 1455-1455, Dec 3, 2025  InvitedLast authorCorresponding author
    During the climate change era, plants are increasingly exposed to multiple environmental challenges occurring simultaneously or sequentially. Among these, salt stress and waterlogging are two major factors that severely constrain crop productivity worldwide and often occur together. To survive under such conditions, plants have evolved sophisticated systems to scavenge harmful levels of reactive oxygen species (ROS). Despite their cytotoxic potential, ROS also act as key signaling molecules that interact with nitric oxide (NO), Ca2+, protein kinases, ion homeostasis pathways, and plant hormones. These signaling and acclimatory mechanisms are closely associated with the functions of energy-regulating organelles—chloroplasts and mitochondria—which are major sources of ROS under both individual and combined stresses. While many of these responses are shared between salt stress, waterlogging and their combination, it is likely that specific signaling mechanisms are uniquely activated when both stresses occur together—mechanisms that cannot be inferred from responses to each stress alone. Such specificity may depend on precise coordination among organelle-derived signals and the tight regulation of their cross-communication. Within this network, ROS and NO likely serve as central hubs, fine-tuning the integration of multiple signaling pathways that enable plants to adapt to complex and fluctuating stress environments.
  • Nobuhiro Suzuki
    International journal of molecular sciences, 24(2), Jan 10, 2023  Peer-reviewedInvitedLead authorCorresponding author
    Heat stress severely affects plant growth and crop production. It is therefore urgent to uncover the mechanisms underlying heat stress responses of plants and establish the strategies to enhance heat tolerance of crops. The chloroplasts and mitochondria are known to be highly sensitive to heat stress. Heat stress negatively impacts on the electron transport chains, leading to increased production of reactive oxygen species (ROS) that can cause damages on the chloroplasts and mitochondria. Disruptions of photosynthetic and respiratory metabolisms under heat stress also trigger increase in ROS and alterations in redox status in the chloroplasts and mitochondria. However, ROS and altered redox status in these organelles also activate important mechanisms that maintain functions of these organelles under heat stress, which include HSP-dependent pathways, ROS scavenging systems and retrograde signaling. To discuss heat responses associated with energy regulating organelles, we should not neglect the energy regulatory hub involving TARGET OF RAPAMYCIN (TOR) and SNF-RELATED PROTEIN KINASE 1 (SnRK1). Although roles of TOR and SnRK1 in the regulation of heat responses are still unknown, contributions of these proteins to the regulation of the functions of energy producing organelles implicate the possible involvement of this energy regulatory hub in heat acclimation of plants.
  • Nobuhiro Suzuki, Shunsuke Shigaki, Mai Yunose, Nicholas Raditya Putrawisesa, Sho Hogaki, Maria Carmela Di Piazza
    Biomimetics (Basel, Switzerland), 7(2), Jun 19, 2022  Peer-reviewedLead authorCorresponding author
    In this paper, the main features of systems that are required to flexibly modulate energy states of plant cells in response to environmental fluctuations are surveyed and summarized. Plant cells possess multiple sources (chloroplasts and mitochondria) to produce energy that is consumed to drive many processes, as well as mechanisms that adequately provide energy to the processes with high priority depending on the conditions. Such energy-providing systems are tightly linked to sensors that monitor the status of the environment and inside the cell. In addition, plants possess the ability to efficiently store and transport energy both at the cell level and at a higher level. Furthermore, these systems can finely tune the various mechanisms of energy homeostasis in plant cells in response to the changes in environment, also assuring the plant survival under adverse environmental conditions. Electrical power systems are prone to the effects of environmental changes as well; furthermore, they are required to be increasingly resilient to the threats of extreme natural events caused, for example, by climate changes, outages, and/or external deliberate attacks. Starting from this consideration, similarities between energy-related processes in plant cells and electrical power grids are identified, and the potential of mechanisms regulating energy homeostasis in plant cells to inspire the definition of new models of flexible and resilient electrical power grids, particularly microgrids, is delineated. The main contribution of this review is surveying energy regulatory mechanisms in detail as a reference and helping readers to find useful information for their work in this research field.
  • Kazuma Katano, Nobuhiro Suzuki
    Plant signaling & behavior, 1-7, Sep 22, 2021  Peer-reviewedLast author
    Pollination is one of the critical processes that determines crop yield and quality. Thus, it is an urgent need to elucidate the mechanisms underlying pollination. Our previous research has revealed a novel phenomenon that pollen attachment to stigma caused stigma shrinkage, whereas failure of pollen attachment to stigma due to the environmental stress induced elongation of stigmatic papillae. However, little is known about the mechanisms of these morphological alterations in stigmatic papillae. Since the RLK-ROPGEF-ROP network is a common mechanism for the elongation of pollen tubes and root hairs, this network may be also involved in the elongation of papillae in the stigma. In this review, we will discuss the known mechanisms regulating pollen tube growth and root hair elongation and attempt to propose an elongation mechanism of stigmatic papillae. In addition, we will suggest that the degradation of F-actin by a significant increase in Ca2+ induced by the components of pollen coat might be a putative molecular mechanism of stigmatic papillae shrinkage during pollen adhesion.
  • Hanako Kiyono, Kazuma Katano, Nobuhiro Suzuki
    Plants (Basel, Switzerland), 10(8), Aug 11, 2021  Peer-reviewedCorresponding author
    To thrive on the earth, highly sophisticated systems to finely control reproductive development have been evolved in plants. In addition, deciphering the mechanisms underlying the reproductive development has been considered as a main research avenue because it leads to the improvement of the crop yields to fulfill the huge demand of foods for the growing world population. Numerous studies revealed the significance of ROS regulatory systems and carbohydrate transports and metabolisms in the regulation of various processes of reproductive development. However, it is poorly understood how these mechanisms function together in reproductive tissues. In this review, we discuss mode of coordination and integration between ROS regulatory systems and carbohydrate transports and metabolisms underlying reproductive development based on the hitherto findings. We then propose three mechanisms as key players that integrate ROS and carbohydrate regulatory systems. These include ROS-dependent programmed cell death (PCD), mitochondrial and respiratory metabolisms as sources of ROS and energy, and functions of arabinogalactan proteins (AGPs). It is likely that these key mechanisms govern the various signals involved in the sequential events required for proper seed production.

Books and Other Publications

 3

Presentations

 21

Research Projects

 5

Industrial Property Rights

 1