研究者業績
基本情報
- 所属
- 上智大学 理工学部物質生命理工学科 准教授
- 学位
- 学士(香川大学)修士(香川大学)Ph.D(University of Nevada Reno)博士(生物化学及び分子生物学)(ネバダ大学リノ校)
- 研究者番号
- 50735925
- J-GLOBAL ID
- 201401089213197583
- researchmap会員ID
- 7000007565
2004年-2009年 University of Nevada, Reno
植物の熱ストレス応答を制御する分子生物学的機構
2009年-2014年
University of North Texas環境ストレスへの全身獲得抵抗性を制御する活性酸素シグナル
2014年-現在 上智大学理工学部物質生命理工学科
異なる環境ストレス応答を制御するシグナルネットワーク
(研究テーマ)
植物の異なる熱ストレス応答を制御する分子生物学的機構
複合ストレスへの植物の応答
研究キーワード
1受賞
9-
2022年11月
-
2021年11月
-
2021年2月
論文
27-
Scientific reports 15(1) 13903-13903 2025年4月22日 査読有り筆頭著者Although positive effects of microwave irradiation on plants have been reported, their underlying mechanisms remain unknown. In this study, we investigated the effects of low microwave irradiation on Arabidopsis thaliana. Interestingly, we found low output (23 W) with oscillating condition (not continuous irradiation) promoted plant growth. The microwave irradiation neither raised the plants' temperature nor induced heat responsive gene expression. Furthermore, overall transcriptome profile in microwave irradiation treated plants were significantly different from heat treated plants, suggesting that growth promotion might be attributed to non-thermal effects of microwave. Transcriptome and metabolome analysis indicated that microwave irradiation altered circadian clock as well as hormonal response especially in auxin and gibberellin, which promoted plant growth by inducing amino acid biosynthesis and stress tolerance, and reducing cell wall thickness. This finding potentially contributes to develop new approach to increase food production through accelerating crop yield in environmentally friendly way.
-
Scientia Hortculturae 341 113986 2025年2月 査読有り最終著者責任著者
-
Physiologia Plantarum 177(1) 2025年1月 査読有り責任著者Abstract Salt stress and waterlogging are two of the most common abiotic stresses in nature, often occurring concurrently. However, our understanding of the mechanisms underlying responses of plants to a combination of these stresses remains limited. In this study, we investigated growth, physiological and biochemical responses of Solanum lycopersicum cv. Micro‐Tom to salt stress, waterlogging and the combination of both. Under waterlogging individually, plants showed increased plant height and longer root length. However, they exhibited a significantly smaller leaf area, fewer leaves, reduced fresh and dry weights, and lower relative water content compared to plants grown under controlled conditions. These effects were more severe than those caused by salt stress alone. Interestingly, the growth inhibition from waterlogging was alleviated under combined salt and waterlogging stress. This attenuation may be associated with decreased accumulation of H₂O₂ and oxidized lipids, along with increased proline and photosynthetic pigment contents compared with waterlogging individually applied. However, ROS accumulations and contents of photosynthetic pigments were not straightforwardly linked to the activity of photosynthesis. In addition, activities of various antioxidant enzymes such as CAT, GPX and GST as well as those involved in the AsA‐GSH cycle were differently altered by salt stress and waterlogging, individually and in combination. Taken together, these results suggest that the response of tomato plants to salt stress and waterlogging, individually and in combination, can be differently modulated via fine‐tuning of acclimation mechanisms to oxidative stress.
-
Plants 13(24) 3508-3508 2024年12月16日 査読有り招待有り最終著者責任著者Flooding causes severe yield losses worldwide, making it urgent to enhance crop tolerance to this stress. Since natural flooding often involves physical flow, we hypothesized that the effects of submergence on plants could change when combined with physical flow. In this study, we analyzed the growth and transcriptome of Arabidopsis thaliana exposed to submergence or flooding with physical flow. Plants exposed to flooding with physical flow had smaller rosette diameters, especially at faster flow rates. Transcriptome analysis revealed that “defense response” transcripts were highly up-regulated in response to flooding with physical flow. In addition, up-regulation of transcripts encoding ROS-producing enzymes, SA synthesis, JA synthesis, and ethylene signaling was more pronounced under flooding with physical flow when compared to submergence. Although H2O2 accumulation changed in response to submergence or flooding with physical flow, it did not lead to lipid peroxidation, suggesting a role for ROS as signaling molecules under these conditions. Multiple regression analysis indicated possible links between rosette diameter under flooding with physical flow and the expression of Rbohs and SA synthesis transcripts. These findings suggest that pathogen defense responses, regulated by SA and ROS signaling, play crucial roles in plant responses to flooding with physical flow.
-
The Plant journal : for cell and molecular biology 117(1) 72-91 2024年1月 査読有りLipocalins constitute a conserved protein family that binds to and transports a variety of lipids while fatty acid desaturases (FADs) are required for maintaining the cell membrane fluidity under cold stress. Nevertheless, it remains unclear whether plant lipocalins promote FADs for the cell membrane integrity under cold stress. Here, we identified the role of OsTIL1 lipocalin in FADs-mediated glycerolipid remodeling under cold stress. Overexpression and CRISPR/Cas9 mediated gene edition experiments demonstrated that OsTIL1 positively regulated cold stress tolerance by protecting the cell membrane integrity from reactive oxygen species damage and enhancing the activities of peroxidase and ascorbate peroxidase, which was confirmed by combined cold stress with a membrane rigidifier dimethyl sulfoxide or a H2 O2 scavenger dimethyl thiourea. OsTIL1 overexpression induced higher 18:3 content, and higher 18:3/18:2 and (18:2 + 18:3)/18:1 ratios than the wild type under cold stress whereas the gene edition mutant showed the opposite. Furthermore, the lipidomic analysis showed that OsTIL1 overexpression led to higher contents of 18:3-mediated glycerolipids, including galactolipids (monoglactosyldiacylglycerol and digalactosyldiacylglycerol) and phospholipids (phosphatidyl glycerol, phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine and phosphatidyl inositol) under cold stress. RNA-seq and enzyme linked immunosorbent assay analyses indicated that OsTIL1 overexpression enhanced the transcription and enzyme abundance of four ω-3 FADs (OsFAD3-1/3-2, 7, and 8) under cold stress. These results reveal an important role of OsTIL1 in maintaining the cell membrane integrity from oxidative damage under cold stress, providing a good candidate gene for improving cold tolerance in rice.
MISC
18-
Antioxidants 14(12) 1455-1455 2025年12月3日 招待有り最終著者責任著者During the climate change era, plants are increasingly exposed to multiple environmental challenges occurring simultaneously or sequentially. Among these, salt stress and waterlogging are two major factors that severely constrain crop productivity worldwide and often occur together. To survive under such conditions, plants have evolved sophisticated systems to scavenge harmful levels of reactive oxygen species (ROS). Despite their cytotoxic potential, ROS also act as key signaling molecules that interact with nitric oxide (NO), Ca2+, protein kinases, ion homeostasis pathways, and plant hormones. These signaling and acclimatory mechanisms are closely associated with the functions of energy-regulating organelles—chloroplasts and mitochondria—which are major sources of ROS under both individual and combined stresses. While many of these responses are shared between salt stress, waterlogging and their combination, it is likely that specific signaling mechanisms are uniquely activated when both stresses occur together—mechanisms that cannot be inferred from responses to each stress alone. Such specificity may depend on precise coordination among organelle-derived signals and the tight regulation of their cross-communication. Within this network, ROS and NO likely serve as central hubs, fine-tuning the integration of multiple signaling pathways that enable plants to adapt to complex and fluctuating stress environments.
-
International journal of molecular sciences 24(2) 2023年1月10日 査読有り招待有り筆頭著者責任著者Heat stress severely affects plant growth and crop production. It is therefore urgent to uncover the mechanisms underlying heat stress responses of plants and establish the strategies to enhance heat tolerance of crops. The chloroplasts and mitochondria are known to be highly sensitive to heat stress. Heat stress negatively impacts on the electron transport chains, leading to increased production of reactive oxygen species (ROS) that can cause damages on the chloroplasts and mitochondria. Disruptions of photosynthetic and respiratory metabolisms under heat stress also trigger increase in ROS and alterations in redox status in the chloroplasts and mitochondria. However, ROS and altered redox status in these organelles also activate important mechanisms that maintain functions of these organelles under heat stress, which include HSP-dependent pathways, ROS scavenging systems and retrograde signaling. To discuss heat responses associated with energy regulating organelles, we should not neglect the energy regulatory hub involving TARGET OF RAPAMYCIN (TOR) and SNF-RELATED PROTEIN KINASE 1 (SnRK1). Although roles of TOR and SnRK1 in the regulation of heat responses are still unknown, contributions of these proteins to the regulation of the functions of energy producing organelles implicate the possible involvement of this energy regulatory hub in heat acclimation of plants.
-
Biomimetics (Basel, Switzerland) 7(2) 2022年6月19日 査読有り筆頭著者責任著者In this paper, the main features of systems that are required to flexibly modulate energy states of plant cells in response to environmental fluctuations are surveyed and summarized. Plant cells possess multiple sources (chloroplasts and mitochondria) to produce energy that is consumed to drive many processes, as well as mechanisms that adequately provide energy to the processes with high priority depending on the conditions. Such energy-providing systems are tightly linked to sensors that monitor the status of the environment and inside the cell. In addition, plants possess the ability to efficiently store and transport energy both at the cell level and at a higher level. Furthermore, these systems can finely tune the various mechanisms of energy homeostasis in plant cells in response to the changes in environment, also assuring the plant survival under adverse environmental conditions. Electrical power systems are prone to the effects of environmental changes as well; furthermore, they are required to be increasingly resilient to the threats of extreme natural events caused, for example, by climate changes, outages, and/or external deliberate attacks. Starting from this consideration, similarities between energy-related processes in plant cells and electrical power grids are identified, and the potential of mechanisms regulating energy homeostasis in plant cells to inspire the definition of new models of flexible and resilient electrical power grids, particularly microgrids, is delineated. The main contribution of this review is surveying energy regulatory mechanisms in detail as a reference and helping readers to find useful information for their work in this research field.
-
What are the key mechanisms that alter the morphology of stigmatic papillae in Arabidopsis thaliana?Plant signaling & behavior 1-7 2021年9月22日 査読有り最終著者Pollination is one of the critical processes that determines crop yield and quality. Thus, it is an urgent need to elucidate the mechanisms underlying pollination. Our previous research has revealed a novel phenomenon that pollen attachment to stigma caused stigma shrinkage, whereas failure of pollen attachment to stigma due to the environmental stress induced elongation of stigmatic papillae. However, little is known about the mechanisms of these morphological alterations in stigmatic papillae. Since the RLK-ROPGEF-ROP network is a common mechanism for the elongation of pollen tubes and root hairs, this network may be also involved in the elongation of papillae in the stigma. In this review, we will discuss the known mechanisms regulating pollen tube growth and root hair elongation and attempt to propose an elongation mechanism of stigmatic papillae. In addition, we will suggest that the degradation of F-actin by a significant increase in Ca2+ induced by the components of pollen coat might be a putative molecular mechanism of stigmatic papillae shrinkage during pollen adhesion.
-
Plants (Basel, Switzerland) 10(8) 2021年8月11日 査読有り責任著者To thrive on the earth, highly sophisticated systems to finely control reproductive development have been evolved in plants. In addition, deciphering the mechanisms underlying the reproductive development has been considered as a main research avenue because it leads to the improvement of the crop yields to fulfill the huge demand of foods for the growing world population. Numerous studies revealed the significance of ROS regulatory systems and carbohydrate transports and metabolisms in the regulation of various processes of reproductive development. However, it is poorly understood how these mechanisms function together in reproductive tissues. In this review, we discuss mode of coordination and integration between ROS regulatory systems and carbohydrate transports and metabolisms underlying reproductive development based on the hitherto findings. We then propose three mechanisms as key players that integrate ROS and carbohydrate regulatory systems. These include ROS-dependent programmed cell death (PCD), mitochondrial and respiratory metabolisms as sources of ROS and energy, and functions of arabinogalactan proteins (AGPs). It is likely that these key mechanisms govern the various signals involved in the sequential events required for proper seed production.
書籍等出版物
3-
Springer 2015年9月15日 (ISBN: 9783319204208)
講演・口頭発表等
21-
The 33rd International Conference on Arabidopsis Research, Chiba, Japan 2023年6月9日
共同研究・競争的資金等の研究課題
5-
日本学術振興会 科学研究費助成事業 挑戦的研究(萌芽) 2020年7月 - 2022年3月
-
日本学術振興会 科学研究費助成事業 2019年6月 - 2022年3月
-
2016年4月 - 2021年3月
-
2016年4月 - 2018年3月
-
生存圏ミッション研究 2015年7月 - 2016年3月